Numerical Simulation Analysis of Different Coal Mine Roadway Support Effect

2013 ◽  
Vol 807-809 ◽  
pp. 2356-2360 ◽  
Author(s):  
Guang Yi Sun ◽  
Xiao Luo

The application of FLAC2D software long ditch coal mine extraction tunnel without support boltgrouting. Anchor when the anchor rope supporting and strengthening supporting state ofroadwaywere simulated and analyzed the change of roadway surrounding rock under differentsupport forms. Demonstrated the possibility that the current anchor cable anchor supporting andanalysis under the condition of the coal wall broken grouting bolt is the necessity of reinforcement.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 606 ◽  
Author(s):  
Qinghai Li ◽  
Jingkai Li ◽  
Jinpeng Zhang ◽  
Changxiang Wang ◽  
Kai Fang ◽  
...  

The surrounding rock control is a tough issue in the roadway with the swelling soft rock. The steel set is an important material for the control of swelling soft rock roadways. However, traditional steel sets failed to prevent the expansive pressure of the soft rock. Based on traditional steel sets, this paper developed a new steel set through both theoretical analysis and numerical simulation. The results showed that the new steel set was the set with the roof beam 1000 mm from the top of the set and the floor beam 400 mm from the bottom end of the set. The maximum deformations of the roof-floor and two sides of the ventilation roadway controlled by the best-improved set at the observation point were 147 mm and 108 mm, respectively. So, the best-improved set can effectively control the surrounding rock of the ventilation roadway. This provides an effective method for the surrounding rock control in extremely soft rock roadways.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1568-1573
Author(s):  
Hai Feng Du

This article describes the basic process of numerical simulation, and an example of Xinyu coal mine roadway numerical simulation research. And the support scheme is proposed by the numerical simulation result.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2071-2077
Author(s):  
Peng Bo Li ◽  
Jin An Wang ◽  
Ke Lv

The boundary magnification phenomenon was achieved in the coal mile surrounding rock, the displacement of surrounding rock was gradually increased, then more gentle in the plastic zone and sharply increase in the broken zone. The overall process of the displacement of surrounding rock exhibited graded changing trend; when the impact came, the broken zone had connected fissures caused by stretch of waves. It eventually increased the degree of damage in the boundaries of the broken zone and roadway. Accordingly, roadway support parameters were adjusted appropriately. From the energy point of view, the length of the anchor bolt was extended properly and that of the anchor cable was reduced properly. The adjusted length of the anchor bolt and cable well matched the size of the broken zone and plastic zone in roadway on site. There was a very good support effect. Anchor production process was also considered to improve gradient strength of materials which can better adapt to the rock burst environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenpeng Su ◽  
Boyang Zheng ◽  
Pengfei Jiang

In order to solve the problems of complicated advanced support process, high labor intensity, affecting the rapid advance of working face and the destruction of roof bolt (cable) by advance single hydraulic prop in ultra kilometer deep mine roadway, the deformation characteristics of roadway surrounding rock is analyzed. Taking the 27304 working face of Wanglou coal mine as the engineering background, numerical simulation, field monitoring, and theoretical calculation were used to analyze the deformation characteristics of roadway surrounding rock within the advanced influence range of 27304 working face. This paper puts forward the active advance support technology scheme, in which grouting anchor cable replaces the existing single hydraulic prop in the advance influence range of the working face in the ultra-kilometer deep mine, and observes and analyzes the deformation and failure characteristics of the surrounding rock of the working face advance roadway. The numerical simulation results show that in the advanced influence range of deep roadway, grouting anchor cable was used to replace the previous single hydraulic prop, and the vertical stress at both ends of the working face decreased by 15 MPa, with a decrease rate of 33.3%; the displacement of roadway roof, floor, and two sides decreased by 10 mm, 55 mm, and 20 mm, with a decrease rate of 40%, 68.75%, and 47.6%, respectively. The field monitoring results show that the roof separation is obviously improved after using grouting anchor cable as the active advance support scheme. It solves the problem of safe and efficient production faced by the ultra-kilometer deep shaft in Wanglou coal mine and provides theoretical and technical support for unmanned double roadway advance support under the condition of safe and efficient mining.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2014 ◽  
Vol 953-954 ◽  
pp. 1638-1642
Author(s):  
Ai Qing Liu ◽  
Jian Zhang ◽  
Peng Cheng ◽  
Yu Hai Zhang

Prestress is a key parameter in bolting, while the cohesive force of layers in the compound roof strata is low and prone to separation, causing the prestress proliferation very poor. With the method of numerical simulation analysis,the location of separation in compound roof to affect the performance of bolting support was researched. It is concluded the roof separation in the edge of anchorage zone, the prestress field superpose, but is away from the deep surrounding rock and shows poor stability,however the role of cable can make up for the defect of rockbolts support. It has been found the highly prestressed strength bolting system adapts to the compound roof.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Kai Zhang ◽  
Xiaojie Yang ◽  
Xuebin Cui ◽  
Yong Wang ◽  
Zhigang Tao

Nanfen open-pit iron mine is the largest single open-pit mine in Asia. Because of the lag of the extension project, the section has slowly spread in the shape of “V,” and disasters such as landslides occur frequently. In this study, first, the NPR anchor cable monitoring, which shows supernormal mechanical characteristics and can realize the monitoring and early warning target for the whole landslide process and early warning curve of bedding rock “2016-1101 landslide” in the lower wall of Nanfen open-pit mine, was analyzed, revealing the failure process of the bedding rock landslide and the force evolution characteristics of the NPR anchor cable. Then, based on the Fish language in FLAC3D and 3DEC software, the mechanical model of the NPR anchor cable was constructed, and numerical simulation was performed on the whole process of “16-1101 landslide” induced by accumulation of old landslide body. The results of this study indicate that the stress monitoring curves and failure characteristics of the NPR anchor cables in the whole process of landslide by the two numerical simulation methods are basically consistent with the field measurement results, providing a theoretical and practical basis for the mechanistic analysis and numerical simulation of other similar slopes.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Dongdong Chen ◽  
Chunwei Ji ◽  
Shengrong Xie ◽  
En Wang ◽  
Fulian He ◽  
...  

Aiming at the problem of large deformation and instability failure and its control of soft coal and soft roof roadway under intense mining, laboratory experiments, theoretical calculations, Flac3D numerical simulation, borehole peeping, and pressure observation were used to study the deflection characteristics of the deviatoric stress of the gas tailgate and the distribution and failure characteristics of the plastic zone in the mining face considering the strain softening characteristics of the roof and coal of roadway, and then the truss anchor cable-control technology is proposed. The results show the following: (1) The intense mining influence on the working face will deflect the peak deviatoric stress zone (PDSZ) of the surrounding rock of the gas tailgate. The influence distance of PDSZ is about 20 m in advance and 60 m in lag; the PDSZ at the gob side of the roadway is located in the range of 3–5.5 m from the surface of the coal pillar, while the coal wall side is mainly located in the range of 3–4.5 m at the shoulder corner and bottom corner of the solid coal. (2) The intense mining in the working face caused the nonuniform expansion of the surrounding rock plastic area of the gas tailgate. The two shoulder angles of the roadway and the bottom of the coal pillar have the largest damage range, and the maximum damage location is the side angle of the coal pillar (5 m). Angle and bottom angle of coal pillar are the key points of support control. (3) The plastic failure line of the surrounding rock of the gas tailgate is always between the inner and outer contours of the PDSZ, and the rock mass in the PDSZ is in a stable and unstable transition state, so the range of anchor cable support should be cross plastic failure line. (4) The theoretical calculations and numerical simulation results agree well with the drilling peep results. Based on the deflection law of the PDSZ and the expansion characteristics of the plastic zone, a truss anchor cable supporting system with integrated locking and large-scale support function is proposed to jointly control the roof and the two sides, which effectively solves the problem of weak surrounding rock roadway under severe mining deformation control problems realizing safety and efficient production in coal mines under intense mining.


2012 ◽  
Vol 524-527 ◽  
pp. 446-449 ◽  
Author(s):  
Fu Kun Xiao ◽  
Chun Jie Zhang ◽  
Li Wei Gao ◽  
Yang Yang Yue

On the engineering background of coal mine roadway orbit, according to the destruction of its original roadway, the paper have analyzed the situation of the deformation in the roadway , using the method of numerical simulation. Besides, it also determined the stress distribution and the forces supporting of roadway in the deformation process. Geological conditions, support patterns and bad construction are considered as the main factors of roadway damage and new support method is given. Numerical simulation method is used to study mechanism about anchor rod, anchor cable and anchor mesh coupled with the surrounding, bottom corner anchor rod and grouting to determine the optimal program. The new program is applied to the practice field and monitored, indicating that the application has a very good effect.


Sign in / Sign up

Export Citation Format

Share Document