open pit mine
Recently Published Documents


TOTAL DOCUMENTS

730
(FIVE YEARS 236)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 116 ◽  
pp. 142-150
Author(s):  
Jiapeng Wan ◽  
Yifan Zeng ◽  
Mei Wang ◽  
Bin Dong ◽  
Zuxin Xu

Mining ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 32-51
Author(s):  
Devendra Joshi ◽  
Amol Paithankar ◽  
Snehamoy Chatterjee ◽  
Sk Md Equeenuddin

Open pit mine production scheduling is a computationally expensive large-scale mixed-integer linear programming problem. This research develops a computationally efficient algorithm to solve open pit production scheduling problems under uncertain geological parameters. The proposed solution approach for production scheduling is a two-stage process. The stochastic production scheduling problem is iteratively solved in the first stage after relaxing resource constraints using a parametric graph closure algorithm. Finally, the branch-and-cut algorithm is applied to respect the resource constraints, which might be violated during the first stage of the algorithm. Six small-scale production scheduling problems from iron and copper mines were used to validate the proposed stochastic production scheduling model. The results demonstrated that the proposed method could significantly improve the computational time with a reasonable optimality gap (the maximum gap is 4%). In addition, the proposed stochastic method is tested using industrial-scale copper data and compared with its deterministic model. The results show that the net present value for the stochastic model improved by 6% compared to the deterministic model.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Yongfeng Lu ◽  
Kepeng Hou ◽  
Huafen Sun ◽  
Wei Sun ◽  
Shengyou Zhang ◽  
...  

In order to study the influence of elevation on the slake durability index of the quartz mica schist, the quartz mica schist with different elevations on the east slope of the Manjiazhai open-pit mine is taken as the research object, and based on laboratory tests and statistical analysis, the variation of negative correlation between the slake durability index and elevation is obtained. The disintegration mechanism of quartz mica schist at different elevations is also discussed. The test results show that the disintegration characteristics of quartz mica schist at different elevations are related to its mineral composition, fissure channel size, and rock damage effect. As the slope height increases, the ratio of mica to quartz in the rock increases, and the greater the porosity of the rock, the more fissures in the rock, the greater the permeability coefficient, and the more obvious the change of effective stress of rock under osmotic pressure. At the same time, the higher the slope elevation of open-pit mine, the longer the weathering time of rock, the higher the cumulative damage of rock, and the lower the rock slake durability index. This study provides a new idea for guiding the research on the disintegration characteristics of similar soft rock slopes in the elevation direction.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiheng Dang ◽  
Zuoming Yin ◽  
Desheng Wang ◽  
Mingyu Fu ◽  
Qi Yin

The microparameter calibration of the particle flow parallel bond model (PBM) is mostly based on a uniaxial compression test. The microparameters calibrated only by uniaxial compression tests cannot be directly used to study the mechanical properties of rocks with surrounding pressure conditions. To analyze the relationship between the macroparameters and microparameters in the model and select appropriate particle flow model parameters, this study conducted a particle flow numerical simulation experiment based on the basic test principles of the uniaxial compression, Brazilian splitting, and triaxial compression tests. An orthogonal experimental design was performed for the calibration of the microparameters of the particle flow PBM, and multifactor analysis of variance was used to screen out the factors that have a considerable influence on the experimental indicators. Regression analysis was performed on the significant influencing factors and test indicators, and the corresponding linear and nonlinear relationships between the macroparameters and microparameters were obtained. Lastly, the microparameters of the model were determined in accordance with the macroparameters of the mechanical test of the Barun open-pit mine dolomite, and a numerical simulation test was conducted. Simulation test results were consistent with the actual test results, thus providing a basis for a subsequent numerical simulation study on the mechanical properties of dolomite.


Author(s):  
S.А. Sedina ◽  
N.O. Berdinova ◽  
G.B. Abdikarimova ◽  
A.A. Altayeva ◽  
V.N. Toksarov

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wanjun Tang ◽  
Fengming Li

AbstractTo reduce the inaccuracy of using the monitoring data outside the pit to evaluate the unorganized emission dust source of open pit mine, the circulating accumulation emission model is established. Based on the model, the monitoring data in the pit can be converted into the dust emission from the pit. The main conclusions include: (1) the circulating accumulation emission model is suitable for the dust diffusion process in open pit mine. The ratio of diffusion $$\mu$$ μ and the ratio of surplus $$\varepsilon$$ ε were used to simulate the dust diffusion process in open pit mine, containing emission, retention and diffusion. (2) The initial value of the dust in the pit before the team operation has little influence on the final stable value. (3) When the external dust enters the pit, it will accumulate under the action of eddy current. The dust background value in the pit is different from that outside the pit. (4) The dust emission from the pit can be calculated from the monitoring data in the pit based on the circulating accumulation emission model. The model can deal with environmental changes such as the wind direction and speed, without arranging a lot of external monitoring equipment like the traditional external monitoring methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qianling Liu ◽  
Zhongjian Zhang ◽  
Bin Zhang ◽  
Wenping Mu ◽  
Huijie Zhang ◽  
...  

AbstractThe identification of open-pit mine water sources is of great significance in preventing water disasters. Combined with hydrochemistry and multivariate statistical analysis, this paper systematically analyzed the hydraulic connections between aquifers and the complex seepage water sources in the pit and roadway of Dagushan iron mine through qualitative analysis and quantitative calculation. According to the hydrochemical characteristics of the study area, the causes of seepage water at different positions in the mining area were reasonably explained. The results show that there is a possible hydraulic connection or similar source of water body between the bedrock fissure aquifer and the eluvium pore aquifer. The water seepage of 2# roadway mainly comes from bedrock fissure aquifer in the north of mining area. The reason for serious water seepage in the 3# roadway and the western side of the pit is that the fault connects the shallow alluvial pore aquifer and bedrock fissure aquifer. The source of water on the southern side pit comes from the river and groundwater on the southern side of the mine. The results presented here provide significant guidance for the management of mine water seepage problems.


Sign in / Sign up

Export Citation Format

Share Document