Research and Implementation on Face-and-Body Detection of the Stray Current of Mine

2014 ◽  
Vol 881-883 ◽  
pp. 1706-1713
Author(s):  
Long Jiang Li ◽  
Qin Zhang ◽  
Yue Qin Qiu ◽  
Xiao Yun Zhao

The stray current of mine refers to the current, which flows in the way of the non-regulation line in mines. When go on the mine operations, in order to achieve stray current controlf high precision, it is necessary to carry on high precision detection of Stray current. Based on traditional “point” and “line” detection, the technology of “Face-and-Body” detection is researched and the detecting way of “Face-and-Body” technology is proposed in the paper. The “Face-and -Body” detection technology is implemented in three-dimensional space on the base of mathematical model of “Face-and-Body” .The “Face-and-Body” detection device includes in establishment of the hardware and software system, and development of the stray current detection current dual output voltage sensors, and so the size and direction of stray current are detected efficiently,thereby it improves the detection precision of the stray current.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9343
Author(s):  
Edwin Dickinson ◽  
Emily Atkinson ◽  
Antonio Meza ◽  
Shruti Kolli ◽  
Ashley R. Deutsch ◽  
...  

The muscles of facial expression are of significant interest to studies of communicative behaviors. However, due to their small size and high integration with other facial tissues, the current literature is largely restricted to descriptions of the presence or absence of specific muscles. Using diffusible iodine-based contrast-enhanced computed tomography (DiceCT) to stain and digitally image the mimetic mask of Eulemur flavifrons (the blue-eyed black lemur), we demonstrate—for the first time—the ability to visualize these muscles in three-dimensional space and to measure their relative volumes. Comparing these data to earlier accounts of mimetic organization with the face of lemuroidea, we demonstrate several novel configurations within this taxon, particularly in the superior auriculolabialis and the posterior auricularis. We conclude that DiceCT facilitates the study these muscles in closer detail than has been previously possible, and offers significant potential for future studies of this anatomy.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


2021 ◽  
Vol 1111 (1) ◽  
pp. 012034
Author(s):  
N A Maksimov ◽  
K Zhigalov ◽  
A V Gorban ◽  
I V Ignatev

Sign in / Sign up

Export Citation Format

Share Document