Particle Filter Object Tracking Algorithm Based on Color and Gradient

2014 ◽  
Vol 926-930 ◽  
pp. 3141-3144 ◽  
Author(s):  
Jiai He ◽  
Yong Na Li

With the robustness of a single color which is not high in standard particle filter tracking, a fusion of color and gradient particle filter algorithm is proposed. By the advantages of color described the target ’global and gradients described the shape of structure, they are weighted fusion to form a new integrated histogram and applied to the particle filter framework. The experimental results show that compared with the traditional particle filter algorithm, the text of the algorithm can achieve relatively reliable target tracking under complicated background and illumination changes, with better robustness and reliability.

2013 ◽  
Vol 457-458 ◽  
pp. 1050-1053
Author(s):  
Yan Hai Wu ◽  
Xia Min Xie ◽  
Zi Shuo Han

Since Mean-Shift tracking algorithm always falls into local extreme value when the target was sheltered and the particle filter tracking algorithm has huge calculation and degeneracy phenomenon, a new target tracking algorithm based on Mean-Shift and Particle Filter combination is proposed in this paper. First, this paper introduces the basic theory of Mean-Shift and Particle Filter tracking algorithm, and then presents the new target tracking which the Mean-Shift iteration embeds Particle Filter algorithm. Experiment results show that the algorithm needs less computation, while the real-time tracking has been guaranteed, robustness has been improved and the tracking results has been greatly increased.


2013 ◽  
Vol 385-386 ◽  
pp. 1484-1487
Author(s):  
En Zeng Dong ◽  
Li Ya Su ◽  
Yan Hong Fu

In this paper, an tracking algorithm combing color and LBP texture features based on particle filter is proposed to overcome the disadvantages of existing particle filter object tracking methods. A color histogram and a texture histogram were combined to build the objects reference model, effectively improving the accuracy of object tracking. Experimental results demonstrate that, compared with the method based on single feature, the proposed method is highly effective, valid and is practicable.


2012 ◽  
Vol 468-471 ◽  
pp. 2352-2356
Author(s):  
Qi Yuan Sun ◽  
Lei Ma ◽  
Zuo Liang Cao

Target tracking algorithm is used widely in many fields, such as robot vision system, intelligent surveillance and medicine, but computational complexity and lack of dedicated embedded system for real-time processing have affected its application. This paper presents a method that combines embedded system, smart camera and mobile robot for detecting and tracking the moving targets. On the basis of particle filter algorithm, mean shift embedded particle filter algorithm is proposed and implemented on embedded platform with ARM+DSP dual core framework. At last, the whole system is optimized to improve the real-time property. The proposed method has a very powerful data processing ability, which can offer a high reliability for the navigation of a mobile robot.


2011 ◽  
Vol 110-116 ◽  
pp. 3343-3350
Author(s):  
Qi Yang ◽  
Jia Fu Jiang

The complexity of the video background of moving target tracking algorithm led to the robustness of the important reasons is not high for the limitations of existing algorithms, a framework based on the movement of particle filter tracking algorithm. In order to reduce the impact of occlusion for the algorithm, the algorithm of moving objects make full use of color and motion characteristics of moving target detection, and to avoid the interference of the complex background, within the framework of particle filter in the object color histogram analysis. Finally, given an effective comparison of the calculation. Experimental results show that particle filter based target tracking algorithm can effectively remove the interference of the complex background, the context for any trace detection of high robustness.


Author(s):  
Norikazu Ikoma ◽  
◽  
Akihiro Asahara ◽  

Real time visual tracking by particle filter has been implemented on Cell Broadband Engine in parallel. Major problem for the implementation is small size of Local Store (LS) in SPEs (Synergistic PEs), which are computational cores, to deal with image of large size. As a first step for the implementation, we focus on color single object tracking, which is one of the most simple case of visual tracking. By elaborating to compress the color extracted image into bit-wise representation of binary image, all information of the color extracted image can be stored in LS for 640×480 size of original image. By applying our previous implementation of general particle filter algorithm on Cell/B.E. to this specific case, we have achieved real time performance of visual tracking on PlayStation®3 about 7 fps with a camera of maximum 15 fps.


Sign in / Sign up

Export Citation Format

Share Document