Detection of Phase Purity of Sr2FeMoO6 by Raman Spectroscopy

2014 ◽  
Vol 989-994 ◽  
pp. 130-133
Author(s):  
Zhen Feng Xu ◽  
Qin Zhang ◽  
Suo Jia Yuan

. The micro-Raman technique is used to examine the phase purity of Sr2FeMoO6 compound in this work. It is found that the Raman spectra of Sr2FeMoO6 compound without impurity consists of the peaks at about 440cm-1 and 620cm-1. The broad peak and shoulder at 820-890cm-1 in the Raman spectra is assigned to the most common impurity SrMoO4 and some other unidentified co-existing phases, which is approved by the results of X-ray diffraction.

2019 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Bilal Abu Sal

This work is devoted to generalize and analyze the previouse results of new photonic-crystalline nanomaterials based on synthetic opals and active dielectrics. Data were characterized by X-ray diffraction and Raman spectroscopy. Active dielectrics infiltrated into the pores of the opal from the melt. The phase structure composition of the infiltrated materials into the pores of the opal matrix were analyzed. The results of x-ray diffraction and Raman spectra allowed to establish the crystal state of active dielectrics in the pores of the opal. The Raman spectra of some opal-active dielectric nanocomposites revealed new bands and changes in band intensities compared to the spectra of single crystals of active dielectrics. Further more, differences in band intensities in the spectra were measured at different spots of the sample‘s surface were observed. The revealed changes were attributed to the formation of new crystalline phases due to the injected dielectrics in opal pores.


2015 ◽  
Vol 1112 ◽  
pp. 106-109
Author(s):  
Angga Virdian ◽  
Heldi Alfiadi ◽  
Yudi Darma

Westudy the structural characteristic of carbon based thin filmprepared by DC unbalanced magnetron sputtering technique on different buffer layer such as γ-Al2O3, SnO2, and Cu. Sputtering parameters of carbon thin film were maintained identical for each buffer layer. Fe-doped carbon pellet and Argon gas have been used as sputtering target and to generate the sputtering plasma, respectively. The roles of buffer layer for the quality of carbon-based thin film have been investigated by X-ray diffraction and Raman spectroscopy analysis. Raman spectra indicatethe formation of agoodquality carbon thin film with crystal-like structure on γ-Al2O3and Cu buffer layer, in contrast to the SnO2buffer layer case. Furthermore Raman spectra confirm thehoneycomb structure with fewer defects in γ-Al2O3indicating that it is more suitable buffer layer than the other. We argue that γ-Al2O3buffer layerprovide a good nucleation site and promote a better atomic arrangement for carbon atoms to form a few layergraphene-like structure. The atomic geometry of γ-Al2O3supports the hexagonal atomic configurationfor carbon atom inthe formation of a few layers graphene. This study mightgive a new approach for the carbon based deposition towards the devices application.


1999 ◽  
Vol 14 (2) ◽  
pp. 442-446 ◽  
Author(s):  
Yingchun Zhu ◽  
Tiao Liu ◽  
Chuanxian Ding

Four samples of TiO2 ultrafine particles (UFP) were obtained through different processes. The structure of TiO2 ultrafine particles and the factors influencing the structure were investigated with Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and x-ray diffraction (XRD). Both Raman spectra and x-ray diffractograms show the similar regularity of the phase transformation among the four samples. The observed bimodal lineshape-structure in the Raman spectra is attributed to the intragrain and grain-boundary components of TiO2 UFP. The crystal structure of TiO2 UFP is found to be distorted by the surface structure such as OH and OCH2CH3 groups coordinated on the surface of TiO2 UFP.


1990 ◽  
Vol 44 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Carlos E. Bamberger ◽  
George M. Begun ◽  
C. Sue MacDougall

The majority of the potassium titanates described in the literature were synthesized, and their Raman spectra recorded. The identity of the compounds K2TiO3, K2Ti2O5, K2Ti4O9, K2Ti6O13, and K2Ti8O17 was confirmed by x-ray diffraction. Raman spectroscopy was then used to study the hydrolysis, under different conditions, of K2Ti2O5 and of K2Ti4O9. On drying of the hydrolysis products, the following species were found to form: K2(H2O)0.66 Ti8O16(OH)2, K1.33(H2O)0.33Ti4O8.33(OH)0.67, and H2Ti8O17. On ignition at temperatures of 500–600°C these species converted, respectively, to K2Ti8O17, K2Ti6O13, and TiO2(B). Raman spectroscopy was used to establish that (1) K6Ti4O11 consists of a mixture of K2TiO3 and a new compound K4Ti3O8; (2) K2Ti3O7 consists of a mixture of K2Ti2O5 and K2Ti4O9, and (3) K2Ti5O11 consists of a mixture of K2Ti4O9 and K2Ti6O13. The temperature of decomposition and the identity of the products of the thermal decomposition of K2Ti8Ol7, K2Ti4O9, K2Ti2O5, and K4Ti3O8 were determined by Raman spectroscopy. The XRD data of the newly identified compounds are reported.


1994 ◽  
Vol 357 ◽  
Author(s):  
O.T. Woo ◽  
D.J. Lockwood ◽  
Y.P. Lin ◽  
V.F. Urbanic

AbstractOxides grown on Zr-20Nb were characterized by Raman Spectroscopy (RS), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). These oxides were steamformed at 400°C, water-formed at 360 °C and at 300 °C, and air-grown at 400°C. For the oxides grown after relatively short exposures at 360°C and at 400°C, Raman spectra revealed broad peaks at 260 and 660 cm− indicating a crystal structure with high symmetry. Comparison with reference Raman spectra of cubic (c), tetragonal (t), and monoclinic (m) ZrO2 suggested that the oxide was predominantly nearly-cubic (tetragonal with c/a ratio ≈ 1), with minor amounts of moxide. The tetragonality is found to be consistent with TEM analyses and XRD results which showed the presence of a doublet near 2θ ° 74°. The crystal structure in the short-term exposed oxides is interpreted in terms of a tetragonal distortion arising from the displacement of oxygen atoms within the cubic ZrO2 crystal structure. For oxides grown after longer periods of exposure at 300°C and at 400°C, RS and XRD indicate increased amounts of m-oxide.


1985 ◽  
Vol 56 ◽  
Author(s):  
J. GONZALEZ ◽  
D.D. ALLRED ◽  
O.V. NGUYEN ◽  
D. MARTIN ◽  
D. PAWLIK

AbstractIn the present study, Raman spectroscopy (RS) and x-ray diffraction have been used to characterize semiconductor multilayer interfaces. A model for Raman spectra of multilayers is developed and applied to the specific case of the interfaces of a-Si/a-Ge multilayers. Quantification of the ‘blurring’ of interfaces is possible because RS is capable of directly ‘counting’ the total number of chemical bonds of a given type in the film. Multilayers, prepared by various deposition techniques, are compared. Several a-Si/a-Ge multilayers deposited by UHV evaporation (MBD) exhibit exceptionally sharp interfaces (intermixing width <l.0Å) and regular periodicities.


1995 ◽  
Vol 09 (26n27) ◽  
pp. 1739-1752
Author(s):  
PREETHI CICILY THOMAS ◽  
MANOJ KUMAR K. ◽  
V. UNNIKRISHNAN NAYAR ◽  
VIDYALAL V. ◽  
C.P.G. VALLABHAN

Potassium doped and undoped GdBa 2 Cu 3 O 7−δ have been prepared and superconducting transition temperatures between 92 K and 100 K have been determined from resistivity measurements. Raman spectra of doped and undoped samples are identical and they contain bands corresponding to both the superconducting orthorhombic phase and nonsuperconducting tetragonal phase. XRD patterns also reveal both the phases. Raman spectra recorded at 92 K of undoped GdBa 2 Cu 3 O 7−δ and doped GdBa 2 Cu 3 O 7−δ with weight percentages 0.75, 1.00, 1.25 and 1.50 of K shows a softening of the band at 338 cm−1.


2005 ◽  
Vol 126 ◽  
pp. 101-105 ◽  
Author(s):  
B. Moulin ◽  
L. Hennet ◽  
D. Thiaudière ◽  
P. Melin ◽  
P. Simon

2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
L. Bourja ◽  
B. Bakiz ◽  
A. Benlhachemi ◽  
M. Ezahri ◽  
J. C. Valmalette ◽  
...  

A series of ceramics samples belonging to theCeO2-Bi2O3phase system have been prepared via a coprecipitation route. The crystallized phases were obtained by heating the solid precursors at600∘Cfor 6 hours, then quenching the samples. X-ray diffraction analyses show that forx<0.20a solid solutionCe1−xBixO2−x/2with fluorine structure is formed. For x ranging between 0.25 and 0.7, a tetragonalβ′phase coexisting with the FCC solid solution is observed. For x ranging between 0.8 and 0.9, a new tetragonalβphase appears. Theβ′phase is postulated to be a superstructure of theβphase. Finally, close tox=1, the classical monoclinicα Bi2O3structure is observed. Raman spectroscopy confirms the existence of the phase changes as x varies between 0 and 1.


Sign in / Sign up

Export Citation Format

Share Document