Thermodynamics of Aluminum Deoxidization Equilibria in GCr18Mo Bearing-Steel

2018 ◽  
Vol 382 ◽  
pp. 80-85 ◽  
Author(s):  
Xin Su ◽  
Shu Qiang Guo ◽  
Meng Ran Qiao ◽  
Hong Yan Zheng ◽  
Li Bin Qin

Based on the predecessors of thermodynamic data, the relationship between aluminum contents and oxygen contents of the aluminum deoxidization reaction was calculated. And the influence of activity coefficient to the reaction equilibrium in bearing-steel is analyzed. First-order and second-order interaction coefficients were used to calculate and draw the equilibrium curves, respectively. The effects of different temperature and different interaction parameters on the deoxidization equilibrium curves were studied. And through the curve the influence of the change of aluminum contents to the activity can be known. The trend of the curve with first-order interaction parameters is consistent with the curve with first-order and second-order interaction parameters at the low Al concentration region. And the oxygen contents of curve with first-order interaction parameters are higher than the other curve at the high Al concentration region

2016 ◽  
Vol 35 (4) ◽  
pp. 347-351 ◽  
Author(s):  
Pei-Wei Han ◽  
Pei-Xian Chen ◽  
Shao-Jun Chu

AbstractThe minimum of oxygen content in the deoxidation equilibrium in liquid iron was thermodynamically analyzed in the present paper. Two criteria were developed to determine the existence of the minimum. The first criterion was $$0 \le x\gamma _{\rm{M}}^{\rm{M}} + y\gamma _{\rm{O}}^{\rm{M}} \le \min ({x \mathord{\left/{\vphantom {x {4.606[\% {\rm{M}}]_{{\rm{ex}}}^2}}} \right.\kern-\nulldelimiterspace} {4.606[\% {\rm{M}}]_{{\rm{ex}}}^2}},{{{{(xe_{\rm{M}}^{\rm{M}} + ye_{\rm{O}}^{\rm{M}})}^2}} \mathord{\left/{\vphantom {{{{(xe_{\rm{M}}^{\rm{M}} + ye_{\rm{O}}^{\rm{M}})}^2}} {3.474x}}} \right.\kern-\nulldelimiterspace} {3.474x}})$$ with $$xe_{\rm{M}}^{\rm{M}} + ye_{\rm{O}}^{\rm{M}} \lt 0$$, or $$x\gamma _{\rm{M}}^{\rm{M}} + y\gamma _{\rm{O}}^{\rm{M}}{\rm{\lt 0}}$$. And the second criterion was $$(xe_{\rm{M}}^{\rm{O}} + ye_{\rm{O}}^{\rm{O}}) + {y \mathord{\left/{\vphantom {y {2.303{{[\% {\rm{O}}]}_{{\rm{ex}}}}}}} \right.\kern-\nulldelimiterspace} {2.303{{[\% {\rm{O}}]}_{{\rm{ex}}}}}} \gt 0$$. The criteria in terms of first-order activity interaction parameters were the special case of present thermodynamic analysis with neglecting the second-order activity interaction parameters. They were not fit for the case of $$xe_{\rm{M}}^{\rm{M}} + ye_{\rm{O}}^{\rm{M}} \gt 0$$, in which case the criteria in terms of second-order activity interaction parameters should be taken into account to determine the existence of the minimum. The value 0.11 of $$e_{{\rm{Si}}}^{{\rm{Si}}}$$ was smaller based on the existence of the minimum for the Fe-O-Si system. It was guaranteed that the minimum value of oxygen content on the deoxidation equilibrium curve existed at silicon content 20 mass%, when the value 0.32 of $$e_{{\rm{Si}}}^{{\rm{Si}}}$$ was chosen, and the second-order activity interaction coefficients $$\gamma _{{\rm{Si}}}^{{\rm{Si}}}$$ and $$\gamma _{\rm{O}}^{{\rm{Si}}}$$ satisfied the condition $$\gamma _{{\rm{Si}}}^{{\rm{Si}}} + 2\gamma _{\rm{O}}^{{\rm{Si}}} = - 1.54 \times {10^{- 3}}$$.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


1995 ◽  
Vol 74 (6) ◽  
pp. 2665-2684 ◽  
Author(s):  
Y. Kondoh ◽  
Y. Hasegawa ◽  
J. Okuma ◽  
F. Takahashi

1. A computational model accounting for motion detection in the fly was examined by comparing responses in motion-sensitive horizontal system (HS) and centrifugal horizontal (CH) cells in the fly's lobula plate with a computer simulation implemented on a motion detector of the correlation type, the Reichardt detector. First-order (linear) and second-order (quadratic nonlinear) Wiener kernels from intracellularly recorded responses to moving patterns were computed by cross correlating with the time-dependent position of the stimulus, and were used to characterize response to motion in those cells. 2. When the fly was stimulated with moving vertical stripes with a spatial wavelength of 5-40 degrees, the HS and CH cells showed basically a biphasic first-order kernel, having an initial depolarization that was followed by hyperpolarization. The linear model matched well with the actual response, with a mean square error of 27% at best, indicating that the linear component comprises a major part of responses in these cells. The second-order nonlinearity was insignificant. When stimulated at a spatial wavelength of 2.5 degrees, the first-order kernel showed a significant decrease in amplitude, and was initially hyperpolarized; the second-order kernel was, on the other hand, well defined, having two hyperpolarizing valleys on the diagonal with two off-diagonal peaks. 3. The blockage of inhibitory interactions in the visual system by application of 10-4 M picrotoxin, however, evoked a nonlinear response that could be decomposed into the sum of the first-order (linear) and second-order (quadratic nonlinear) terms with a mean square error of 30-50%. The first-order term, comprising 10-20% of the picrotoxin-evoked response, is characterized by a differentiating first-order kernel. It thus codes the velocity of motion. The second-order term, comprising 30-40% of the response, is defined by a second-order kernel with two depolarizing peaks on the diagonal and two off-diagonal hyperpolarizing valleys, suggesting that the nonlinear component represents the power of motion. 4. Responses in the Reichardt detector, consisting of two mirror-image subunits with spatiotemporal low-pass filters followed by a multiplication stage, were computer simulated and then analyzed by the Wiener kernel method. The simulated responses were linearly related to the pattern velocity (with a mean square error of 13% for the linear model) and matched well with the observed responses in the HS and CH cells. After the multiplication stage, the linear component comprised 15-25% and the quadratic nonlinear component comprised 60-70% of the simulated response, which was similar to the picrotoxin-induced response in the HS cells. The quadratic nonlinear components were balanced between the right and left sides, and could be eliminated completely by their contralateral counterpart via a subtraction process. On the other hand, the linear component on one side was the mirror image of that on the other side, as expected from the kernel configurations. 5. These results suggest that responses to motion in the HS and CH cells depend on the multiplication process in which both the velocity and power components of motion are computed, and that a putative subtraction process selectively eliminates the nonlinear components but amplifies the linear component. The nonlinear component is directionally insensitive because of its quadratic non-linearity. Therefore the subtraction process allows the subsequent cells integrating motion (such as the HS cells) to tune the direction of motion more sharply.


2001 ◽  
Vol 5 (1_suppl) ◽  
pp. 213-236 ◽  
Author(s):  
Emery Schubert

Publications of research concerning continuous emotional responses to music are increasing. The developing interest brings with it a need to understand the problems associated with the analysis of time series data. This article investigates growing concern in the use of conventional Pearson correlations for comparing time series data. Using continuous data collected in response to selected pieces of music, with two emotional dimensions for each piece, two falsification studies were conducted. The first study consisted of a factor analysis of the individual responses using the original data set and its first-order differenced transformation. The differenced data aligned according to theoretical constraints better than the untransformed data, supporting the use of first-order difference transformations. Using a similar method, the second study specifically investigated the relationship between Pearson correlations, difference transformations and the critical correlation coefficient above which the conventional correlation analysis remains internally valid. A falsification table was formulated and quantified through a hypothesis index function. The study revealed that correlations of undifferenced data must be greater than 0.75 for a valid interpretation of the relationship between bivariate emotional response time series data. First and second-order transformations were also investigated and found to be valid for correlation coefficients as low as 0.24. Of the three version of the data (untransformed, first-order differenced, and second-order differenced), first-order differenced data produced the fewest problems with serial correlation, whilst remaining a simple and meaningful transformation.


2015 ◽  
Vol 5 (6) ◽  
pp. 115
Author(s):  
Lei Qiu

<p>Along with the general trends of research from traditional Gricean approach to postmodern approach, politeness has been conceptualized as facework, social indexing concept, relational work and interactional work. Based on examination of debates over East group-oriented and Western individual-oriented politeness, first-order and second-order politeness, as well as the universality and relativity of conceptualizations, this paper has roughly demonstrated that the tension between universality and relativity of politeness can help to explain the reason for lack of uniform definition and concept in this field. It is essential for researchers to seek a universal second-order culture-general theoretical construct on one hand, and to look at first-order culture-specific constructs on the other hand.</p>


1980 ◽  
Vol 47 (1) ◽  
pp. 75-81 ◽  
Author(s):  
R. T. Shield

When a mechanical system has a potential energy, it is a simple matter to show that if the generalized force corresponding to a coordinate p is known to first order in p for a range of the other coordinates of the system, then the other generalized forces can be found immediately to second order in p, without requiring a second-order analysis of the system. By this method the second-order change in the axial force when a finitely extended elastic cylinder is twisted is found from the first-order value of the twisting moment. Numerical results for a realistic form of the strain-energy function for an incompressible material suggest that the second-order expression for the axial force is very accurate for a wide range of twist for circular cylinders of rubber-like materials extended 100 percent or more.


1991 ◽  
Vol 56 (3) ◽  
pp. 1038-1063 ◽  
Author(s):  
Gaisi Takeuti

In [1] S. Buss introduced systems of bounded arithmetic , , , (i = 1, 2, 3, …). and are first order systems and and are second order systems. and are closely related to and respectively in the polynomial hierarchy, and and are closely related to PSPACE and EXPTIME respectively. One of the most important problems in bounded arithmetic is whether the hierarchy of bounded arithmetic collapses, i.e. whether = or = for some i, or whether = , or whether is a conservative extension of S2 = ⋃i. These problems are relevant to the problems whether the polynomial hierarchy PH collapses or whether PSPACE = PH or whether PSPACE = EXPTIME. It was shown in [4] that = implies and consequently the collapse of the polynomial hierarchy. We believe that the separation problems of bounded arithmetic and the separation problems of computational complexities are essentially the same problem, and the solution of one of them will lead to the solution of the other.


Author(s):  
VLADIMIR LIFSCHITZ

Abstarct In the theory of answer set programming, two groups of rules are called strongly equivalent if, informally speaking, they have the same meaning in any context. The relationship between strong equivalence and the propositional logic of here-and-there allows us to establish strong equivalence by deriving rules of each group from rules of the other. In the process, rules are rewritten as propositional formulas. We extend this method of proving strong equivalence to an answer set programming language that includes operations on integers. The formula representing a rule in this language is a first-order formula that may contain comparison symbols among its predicate constants, and symbols for arithmetic operations among its function constants. The paper is under consideration for acceptance in TPLP.


2019 ◽  
Vol 30 (2) ◽  
pp. 549-560 ◽  
Author(s):  
Mikhail Rybakov ◽  
Dmitry Shkatov

Abstract We investigate the relationship between recursive enumerability and elementary frame definability in first-order predicate modal logic. On one hand, it is well known that every first-order predicate modal logic complete with respect to an elementary class of Kripke frames, i.e. a class of frames definable by a classical first-order formula, is recursively enumerable. On the other, numerous examples are known of predicate modal logics, based on ‘natural’ propositional modal logics with essentially second-order Kripke semantics, that are either not recursively enumerable or Kripke incomplete. This raises the question of whether every Kripke complete, recursively enumerable predicate modal logic can be characterized by an elementary class of Kripke frames. We answer this question in the negative, by constructing a normal predicate modal logic which is Kripke complete, recursively enumerable, but not complete with respect to an elementary class of frames. We also present an example of a normal predicate modal logic that is recursively enumerable, Kripke complete, and not complete with respect to an elementary class of rooted frames, but is complete with respect to an elementary class of frames that are not rooted.


1979 ◽  
Vol 57 (17) ◽  
pp. 1777-1782 ◽  
Author(s):  
Alastair D. Macdonald

The female inflorescence of Fagus grandifolia comprises two flowers; one flower terminates the first-order inflorescence axis, the other flower terminates the second-order inflorescence axis. Each flower is flanked by two cupular valves each of which arise in the axil of a bract. The two valves flanking the flower terminating the first-order inflorescence axis represent second-order inflorescence axes and the two valves flanking the flower terminating the second-order inflorescence axis represent third-order inflorescence axes. The four valves remain discrete. Each female flower of Quercus macrocarpa terminates a second-order inflorescence axis and is surrounded by a continuous cupule. The cupule first forms as two primordia in the axils of each of the two transversal second-order bracts. These cupular primordia represent third-order inflorescence branches. The cupule primordia become continuous about the pedicel by meristem extension. The cupules of Fagus and Quercus are homologous to the extent that they are modified axes of the inflorescence. This serves as a model to interpret the morphological nature of the fagaceous cupule.


Sign in / Sign up

Export Citation Format

Share Document