scholarly journals Cobalt Ferrite Nanoparticles: An Innovative Approach for Enhanced Oil Recovery Application

2012 ◽  
Vol 17 ◽  
pp. 115-126 ◽  
Author(s):  
Noorhana Yahya ◽  
Muhammad Kashif ◽  
Nadeem Nasir ◽  
Majid Niaz Akhtar ◽  
Noorasikin Mohd Yusof

This Paper Describes the Synthesis of Cobalt Ferrite (CoFe2O4) Nanoparticles and their Application in Enhanced Oil Recovery. Cobalt Ferrite (CoFe2O4) Nanoparticles Were Used as Ferrite Magnetic Feeders with Antenna to Improve the Magnetic Field Strength and Cobalt Ferrite Nanofluid to Improve Oil Recovery. Cobalt Ferrite (CoFe2O4) Nanoparticles Were Synthesized by Sol-Gel Method. these Nanoparticles Were then Characterized by Using X-Ray Diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM). Cobalt Ferrite Nanoparticles Annealed at 600oC, the Particle Size Is 51.17nm and 26nm as Determined by XRD and FESEM, Respectively while for the Sample Annealed at 800oC, the Particle Size Is 62nm as Determined by XRD and 60 Nm as Determined by FESEM. Magnetic Measurement Results Show that Initial Permeability of Cobalt Ferrite Powder Increased and Relative Loss Factor Decreased at High Frequency. in Order to Improve the Oil Recovery, Nanoparticles Were Used in Two Different Experiments. in the First Experiment, Nanoparticles Were Used as Magnetic Feeders with an Antenna to Improve the Magnetic Field Strength. in the Second Experiment, Nanoparticles Were Used as Nanofluids. Results Show that the Antenna with Magnetic Feeders Increases the Magnetic Field Strength by 0.94% as Compared to Antenna without Magnetic Feeders in the Water, and by 5.90% in the Air. Magnitude versus Offset (MVO) Study of Antenna with Magnetic Feeders Shows an Increase in Magnetic Field Strength of 275% as Compared to Antenna without Magnetic Feeders. it Is Found that Antenna with Magnetic Feeders Was Able to Recover 29.50% and 20.82% of Original Oil in Place (OOIP) in Core Rock Samples A-1 and A-2 Respectively. the Use of Cobalt Ferrite Nanoparticles as a Nanofluid with Electromagnetic Waves Yielded a Higher Recovery of Residual Oil in Place (ROIP) which Is 31.58% as Compared to 8.70% when it Was Used as Nanofluid Alone. it Is Investigated that due to Absorption of Electromagnetic Waves by Cobalt Ferrite Nanoparticles the Oil Viscosity Reduces which Increase the Oil Recovery. it Can Be Concluded that the Synthesised Cobalt Ferrite (CoFe2O4) Nanoparticles Can Be Potentially Used for Enhanced Oil Recovery in Future.

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 991 ◽  
Author(s):  
Mohamed S. A. Darwish ◽  
Hohyeon Kim ◽  
Hwangjae Lee ◽  
Chiseon Ryu ◽  
Jae Young Lee ◽  
...  

Magnetic ferrite nanoparticles (MFNs) with high heating efficiency are highly desirable for hyperthermia applications. As conventional MFNs usually show low heating efficiency with a lower specific loss power (SLP), extensive efforts to enhance the SLP of MFNs have been made by varying the particle compositions, sizes, and structures. In this study, we attempted to increase the SLP values by creating core-shell structures of MFNs. Accordingly, first we synthesized three different types of core ferrite nanoparticle of magnetite (mag), cobalt ferrite (cf) and zinc cobalt ferrite (zcf). Secondly, we synthesized eight bi-magnetic core-shell structured MFNs; Fe3O4@CoFe2O4 (mag@cf1, mag@cf2), CoFe2O4@Fe3O4 (cf@mag1, cf@mag2), Fe3O4@ZnCoFe2O4 (mag@zcf1, mag@zcf2), and ZnCoFe2O4@Fe3O4 (zcf@mag1, zcf@mag2), using a modified controlled co-precipitation process. SLP values of the prepared core-shell MFNs were investigated with respect to their compositions and core/shell dimensions while varying the applied magnetic field strength. Hyperthermia properties of the prepared core-shell MFNs were further compared to commercial magnetic nanoparticles under the safe limits of magnetic field parameters (<5 × 109 A/(m·s)). As a result, the highest SLP value (379.2 W/gmetal) was obtained for mag@zcf1, with a magnetic field strength of 50 kA/m and frequency of 97 kHz. On the other hand, the lowest SLP value (1.7 W/gmetal) was obtained for cf@mag1, with a magnetic field strength of 40 kA/m and frequency of 97 kHz. We also found that magnetic properties and thickness of the shell play critical roles in heating efficiency and hyperthermia performance. In conclusion, we successfully enhanced the SLP of MFNs by engineering their compositions and dimensions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1271
Author(s):  
Andrey V. Shibaev ◽  
Maria E. Smirnova ◽  
Darya E. Kessel ◽  
Sergey A. Bedin ◽  
Irina V. Razumovskaya ◽  
...  

The development of actuators with remote control is important for the construction of devices for soft robotics. The present paper describes a responsive hydrogel of nontoxic, biocompatible, and biodegradable polymer carboxymethyl hydroxypropyl guar with dynamic covalent cross-links and embedded cobalt ferrite nanoparticles. The nanoparticles significantly enhance the mechanical properties of the gel, acting as additional multifunctional non-covalent linkages between the polymer chains. High magnetization of the cobalt ferrite nanoparticles provides to the gel a strong responsiveness to the magnetic field, even at rather small content of nanoparticles. It is demonstrated that labile cross-links in the polymer matrix impart to the hydrogel the ability of self-healing and reshaping as well as a fast response to the magnetic field. In addition, the gel shows pronounced pH sensitivity due to pH-cleavable cross-links. The possibility to use the multiresponsive gel as a magnetic-field-triggered actuator is demonstrated.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


2003 ◽  
Vol 13 (12) ◽  
pp. 3783-3789 ◽  
Author(s):  
F. E. SMITH ◽  
P. LANGLEY ◽  
L. TRAHMS ◽  
U. STEINHOFF ◽  
J. P. BOURKE ◽  
...  

Multichannel magnetocardiography measures the magnetic field distribution of the human heart noninvasively from many sites over the body surface. Multichannel magnetocardiogram (MCG) analysis enables regional temporal differences in the distribution of cardiac magnetic field strength during depolarization and repolarization to be identified, allowing estimation of the global and local inhomogeneity of the cardiac activation process. The aim of this study was to compare the spatial distribution of cardiac magnetic field strength during ventricular depolarization and repolarization in both normal subjects and patients with cardiac abnormalities, obtaining amplitude measurements by magnetocardiography. MCGs were recorded at 49 sites over the heart from three normal subjects and two patients with inverted T-wave conditions. The magnetic field intensity during depolarization and repolarization was measured automatically for each channel and displayed spatially as contour maps. A Pearson correlation was used to determine the spatial relationship between the variables. For normal subjects, magnetic field strength maps during depolarization (R-wave) showed two asymmetric regions of magnetic field strength with a high positive value in the lower half of the chest and a high negative value above this. The regions of high R-wave amplitude corresponded spatially to concentrated asymmetric regions of high magnetic field strength during repolarization (T-wave). Pearson-r correlation coefficients of 0.7 (p<0.01), 0.8 (p<0.01) and 0.9 (p<0.01) were obtained from this analysis for the three normal subjects. A negative correlation coefficient of -0.7 (p<0.01) was obtained for one of the subjects with inverted T-wave abnormalities, suggesting similar but inverted magnetic field and current distributions to normal subjects. Even with the high correlation values in these four subjects, the MCG was able to identify differences in the distribution of magnetic field strength, with a shift in the T-wave relative to the R-wave. The measurement of cardiac magnetic field distribution during depolarization and repolarization of normal subjects and patients with clinical abnormalities should enable the improvement of theoretical models for the explanation of the cardiac depolarization and repolarization processes.


2019 ◽  
Vol 21 (25) ◽  
pp. 13696-13705 ◽  
Author(s):  
Alexey S. Kiryutin ◽  
Bogdan A. Rodin ◽  
Alexandra V. Yurkovskaya ◽  
Konstantin L. Ivanov ◽  
Dennis Kurzbach ◽  
...  

The magnetic field strength during sample transfer in dissolution dynamic nuclear polarization influences the resulting spectra.


1972 ◽  
Vol 50 (2) ◽  
pp. 116-118 ◽  
Author(s):  
C. W. T. Chien ◽  
R. E. Bardsley ◽  
F. W. Dalby

Zero-field level-crossing techniques have been used to measure some upper-state lifetimes of the helium atom. The half-widths of curves obtained by plotting the polarization against the magnetic field strength for the n1D–21D transitions yielded lifetimes of 2.03 × 10−8 s for the 31D state, 3.36 × 10−8 s for the 41D state, and 7.44 × 10−8 s for the 51D state. Collision cross sections for these 1D levels were also determined.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Yakun Tian ◽  
Shulei Song ◽  
Xuan Xu ◽  
Xinyu Wei ◽  
Shanwen Yan ◽  
...  

The bed pressure drop, minimum fluidized gas velocity, bed density, and bed expansion rate are important parameters characterizing the fluidization characteristics of gas-solid fluidized beds. By analyzing these parameters, the advantages and disadvantages of the fluidization state can be known. In this study, experiments were conducted to study the fluidization characteristics of a gas-solid magnetically fluidized bed for microfine particles by changing the magnetic field strength, magnetic field addition sequence, and static bed height. The experimental results show that when the magnetic field strength increased from 0 KA/m to 5 KA/m, the minimum fluidized gas velocity of particles increased from 4.42 cm/s to 10.32 cm/s, while the bed pressure drop first increased and then decreased. When the magnetic field strength is less than 3.4 KA/m, the microfine particles in the bed are mainly acted on by the airflow; while when the magnetic field strength is greater than 3.4 KA/m, the microfine particles are mainly dominated by the magnetic field. The magnetic field addition sequence affects the fluidization quality of microfine particles. The fluidized bed with ‘adding magnetic field first’ shows a more stable fluidization state than ‘adding magnetic field later’. Increasing of the static bed height reduces the bed expansion rate. The bed expansion rate is up to 112.5% at a static bed height of h0 = 40 mm and H = 5 KA/m. This will broaden the range of density regulation of a single magnetic particle and lay the advantage of gas-solid magnetically fluidized bed for microfine particles in the field of separation of fine coal.


2021 ◽  
pp. 151-151
Author(s):  
Ruihao Zhang ◽  
Sixian Wang ◽  
Shan Qing ◽  
Zhumei Luo ◽  
Zhang Xiaohui

This paper focuses on the convective heat transfer characteristics of Fe3O4 /Water magnetic nanofluids under laminar and turbulent conditions. After verifying the accuracy of the experimental apparatus, the effects of magnetic field strength, concentration, Reynolds number and temperature on the convective heat transfer coefficient have been studied. The convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions were studied in depth, and the influence of each factor on the heat transfer coefficient was analyzed by orthogonal experimental design method. Under the laminar flow conditions, the convective heat transfer of magnetic nanofluids performed best when the Reynolds number was 2000, the magnetic field strength was 600, the temperature was 30? and the concentration was 2%. And the convective heat transfer coefficient (h) increased by 3.96% than the distilled water in the same conditions. In turbulent state, the convective heat transfer of magnetic nanofluids performed the best when the Re was 6000, the magnetic field strength was 600, the temperature was 40? and the concentration was 2%. The h increased by 11.31% than the distilled water in the same Reynolds number and the magnetic field strength conditions.


Sign in / Sign up

Export Citation Format

Share Document