secular variations
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 54)

H-INDEX

36
(FIVE YEARS 4)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 40
Author(s):  
Ana G. Elias ◽  
Blas F. de Haro Barbas ◽  
Bruno S. Zossi ◽  
Franco D. Medina ◽  
Mariano Fagre ◽  
...  

The Earth’s ionosphere presents long-term trends that have been of interest since a pioneering study in 1989 suggesting that greenhouse gases increasing due to anthropogenic activity will produce not only a troposphere global warming, but a cooling in the upper atmosphere as well. Since then, long-term changes in the upper atmosphere, and particularly in the ionosphere, have become a significant topic in global change studies with many results already published. There are also other ionospheric long-term change forcings of natural origin, such as the Earth’s magnetic field secular variation with very special characteristics at equatorial and low latitudes. The ionosphere, as a part of the space weather environment, plays a crucial role to the point that it could certainly be said that space weather cannot be understood without reference to it. In this work, theoretical and experimental results on equatorial and low-latitude ionospheric trends linked to the geomagnetic field secular variation are reviewed and analyzed. Controversies and gaps in existing knowledge are identified together with important areas for future study. These trends, although weak when compared to other ionospheric variations, are steady and may become significant in the future and important even now for long-term space weather forecasts.


MAUSAM ◽  
2021 ◽  
Vol 60 (3) ◽  
pp. 309-316
Author(s):  
D. M. RASE ◽  
M. P. SHEVALE ◽  
S. I. M. RIZVI

Importance of monsoon depressions, Low Pressure Systems (LPS) and the number of LPS days on rainfall and hence indirectly on agriculture and hydrology, is well recognized.      In this paper the pattern of annual variability in these systems have been examined using data from 1901-2000. The above mentioned parameters have been subjected to decadal analysis to detect presence of any regular pattern. An attempt has been made to find its tendency with time.  Impact of these systems on central India rainfall has been determined and discussed.     The study endorses the earlier findings that there is a   decreasing trend in the frequency of depressions which has been compensated with increase in LPS days over Indian region in recent years.  The rainfall over central India is more significantly related with a number of LPS days over Indian region.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Omnia A. Elhiny ◽  
Mohammed Abou Elyazied ◽  
Ghada A. Salem

Abstract Background The choice between extraction and expansion treatment is an endless debate in orthodontics. Ethnic and secular variations showed that there was a change in  arch perimeter over the last 50 years. Accordingly, the purpose of this study was to investigate the relation between the arch perimeter and the intercanine and intermolar widths in normal occlusion. Also, to design regression equations for the prediction of the arch perimeter based on arch width, in a sample of the Egyptian population. The images of 340 cast pairs for 11 to 13-year-old patients were traced using TracerNet. Intercanine width, intermolar width and arch perimeter were measured, statistical analysis was performed and regression equations for both arches were formulated. Results There was a positive correlation between the lower arch AP, ICW and IMW and between the upper arch AP and ICW. Lower arch perimeter = 0.536 I33 + 71.642, lower arch perimeter = 0.828 l66 + 58.604 and upper arch perimeter = 1.988 U33 + 30.492 were the significant derived equations. Conclusions The formulation of regression equations offers a tool for the prediction of arch perimeter or arch width that can act as a guide in diagnosis and treatment planning.


2021 ◽  
Vol 43 (3) ◽  
pp. 181-192
Author(s):  
T. P. Sumaruk ◽  
P. V. Sumaruk

According to the data of world observatories net secular variations of geomagnetic fields from internal and outer sources have been studied. Averaged 3-year data have been used for this purpose. Procedure of calculations of secular variations from internal and outer sources according to observatories data has been submitted. 1979 has been chosen as a zero level for accounting secular variations from outer sources because the sign of the large-scale magnetic field has changed this year. It has been shown that the value of secular variations from outer sources is different for different regions and increases with the growth of the latitude of magnetic observatory. Maximal values of secular variations are observed in the northern polar cap as well as at the longitudes of the eastern focus of secular variation. It has been shown that at the DIK, CSS, TIK observatories secular variations have maximal values. Groups of observatories have been segregated with symmetric and asymmetric changes of secular variation comparing to 1979. Symmetric changes of secular variation during two Hail’s cycles are observed at the observatories in circumpolar area (ALE, NAL, BJN), in auroral and middle latitudes. Maximal asymmetry of secular variation is observed at the observatories GDH, BLC, FCC, as well as at certain subauroral observatories and the regions with raised seismic activity. Secular variation from outer sources depends on the value of the large scale magnetic field of the Sun. The value of secular variation from the inner sources has been modulated by the outer sources and depends on special features of underlying surfaces of the observatories, induction currents in particular.


Author(s):  
Petra Koucká Knížová ◽  
Jan Laštovička ◽  
Daniel Kouba ◽  
Zbyšek Mošna ◽  
Katerina Podolská ◽  
...  

The ionosphere represents part of the upper atmosphere. Its variability is observed on a wide-scale temporal range from minutes, or even shorter, up to scales of the solar cycle and secular variations of solar energy input. Ionosphere behavior is predominantly determined by solar and geomagnetic forcing. However, the lower-lying atmospheric regions can contribute significantly to the resulting energy budget. The energy transfer between distant atmospheric parts happens due to atmospheric waves that propagate from their source region up to ionospheric heights. Experimental observations show the importance of the involvement of the lower atmosphere in ionospheric variability studies in order to accurately capture small-scale features of the upper atmosphere. In the Part I Coupling, we provide a brief overview of the influence of the lower atmosphere on the ionosphere and summarize the current knowledge. In the Part II Coupling Evidences Within Ionospheric Plasma—Experiments in Midlatitudes, we demonstrate experimental evidence from mid-latitudes, particularly those based on observations by instruments operated by the Institute of Atmospheric Physics, Czech Academy of Sciences. The focus will mainly be on coupling by atmospheric waves.


Geosphere ◽  
2021 ◽  
Author(s):  
Antonio Castro ◽  
Carmen Rodriguez ◽  
Carlos Fernández ◽  
Eugenio Aragón ◽  
Manuel Francisco Pereira ◽  
...  

This study of Sr-Nd initial isotopic ratios of plutons from the North Patagonian batholith (Argentina and Chile) revealed that a secular evolution spanning 180 m.y., from the Jurassic to Neogene, can be established in terms of magma sources, which in turn are correlated with changes in the tectonic regime. The provenance and composition of end-member components in the source of magmas are represented by the Sr-Nd initial isotopic ratios (87Sr/86Sr and 143Nd/144Nd) of the plutonic rocks. Our results support the interpretation that source composition was determined by incorporation of varied crustal materials and trench sediments via subduction erosion and sediment subduction into a subduction channel mélange. Subsequent melting of subducted mélanges at mantle depths and eventual reaction with the ultramafic mantle are proposed as the main causes of batholith magma generation, which was favored during periods of fast convergence and high obliquity between the involved plates. We propose that a parental diorite (= andesite) precursor arrived at the lower arc crust, where it underwent fractionation to yield the silicic melts (granodiorites and granites) that formed the batholiths. The diorite precursor could have been in turn fractionated from a more mafic melt of basaltic andesite composition, which was formed within the mantle by complete reaction of the bulk mélanges and the peridotite. Our proposal follows model predictions on the formation of mélange diapirs that carry fertile subducted materials into hot regions of the suprasubduction mantle wedge, where mafic parental magmas of batholiths originate. This model not only accounts for the secular geochemical variations of Andean batholiths, but it also avoids a fundamental paradox of the classical basalt model: the absence of ultramafic cumulates in the lower arc crust and in the continental crust in general.


2021 ◽  
Vol 57 (1) ◽  
pp. 241-246
Author(s):  
J. H. Peña ◽  
H. Huepa ◽  
D. S. Piña ◽  
J. Guillén ◽  
A. Rentería ◽  
...  

The systematic study of some HADS stars, recognized as variables for decades, has allowed us to provide data on their secular variations through O-C analysis. However, some of the data have large gaps without observations. This is our motivation for continuously observing these stars as part of the research carried out by the “Grupo de Astronomía Observacional del Observatorio de Tonantzintla” (GAOOT). This article is our third compilation of times of maxima for pulsating stars. These observations have been carried out at the Observatorio Astronómico Nacional de Tonantzintla (TNT) and San Pedro Mártir (SPM), México and for the first time we also present data from the Complejo Astronómico de Cota Cota, Bolivia (Universidad Mayor de San Andrés) and the Observatorio Astronómico Centroamericano de Suyapa, Honduras (Universidad Nacional Autónoma de Honduras).


Sign in / Sign up

Export Citation Format

Share Document