The Investigation of Structural and Magnetic Properties at High-Temperature of Nanostructured Fe90-Mg10 Alloys Produced by Mechanical Alloying
Nanocrystalline Fe90Mg10 alloy samples were prepared by mechanical alloying process using planetary high energy ball mill. The prepared powders were characterized using differential thermal analysis (DTA), X-ray diffraction technique (XRD) at high temperature, transmission electron microscopy (TEM), and the vibrating sample magnetometer (VSM). Obtained results are discussed according to milling time. XRD at high temperature results also indicated that when the milling time increases, the lattice parameter and the mean level of grain size increase, whereas the microstrains decrease. The result of the observation by the TEM of the Fe-Mg powders prepared in different milling time, coercive fields derived and Saturation magnetization derived from the hysteresis curves in high temperature are discussed as a function of milling time.