Processing and Electrical Properties of KNbO3 Ferroelectric Dense Ceramics Added with Small Amount of Bi2O3 and MnCO3

2006 ◽  
Vol 301 ◽  
pp. 19-22 ◽  
Author(s):  
Takeru Yoshida ◽  
Hajime Nagata ◽  
Tadashi Takenaka

Doping a small quantity of additive Bi2O3 is effective in suppressing the deliquescence of KNbO3 ceramics. When an optimized ball-milling process was included, dense and nondeliquescent KNbO3 ceramics were obtained by a conventional firing process. However, the presence of Bi prevented grain growth (<0.2 μm) and it was one of the causes of low ferroelectricity. Moreover, the insufficient resistivity made the poling treatment difficult. In order to improve the electric properties, a small quantity of additive MnCO3 was also doped into KNbO3 with 0.5 mass% Bi2O3. Codoping of KNbO3 with MnCO3 and Bi2O3 (abbreviated to KNBixMny; x = 0~1.0, y = 0~1.0 in mass%) improved the ferroelectricity of samples, and it also had an effect on the resistivity and densification of sintered bodies. Well-saturated P-E hysteresis loops were observed with any amount of Mn and the largest remanent polarization Pr was about 16 μC/cm2. The piezoelectric properties of KNBi0.5Mn0.3, which had the highest piezoelectricity in this study, are an electromechanical coupling factor k33 and piezoelectric constant d33 of 0.30 and 101 pC/N, respectively.

2014 ◽  
Vol 887-888 ◽  
pp. 289-293
Author(s):  
Jing Chang Zhao ◽  
Zhen Lai Zhou

(Na,Bi)TiO3-BaTiO3lead free piezoelectric ceramics were fabricated with modification of CaCu3Ti4O12additives. The phase structure, morphology, dielectric and piezoelectric properties of prepared samples were investigated, respectively. It was found that CaCu3Ti4O12additives evidently improve the polarization properties of (Na,Bi)TiO3-BaTiO3lead free ceramics and the obtained samples exhibit an excellent piezoelectric properties (electromechanical coupling factorKp=31%, mechanical quality factorQm=151 and piezoelectric constantd33=160pC/N). According to results, the effect of CaCu3Ti4O12additives on electrical properties of (Na,Bi)TiO3-BaTiO3lead free piezoelectric ceramics is discussed.


2009 ◽  
Vol 421-422 ◽  
pp. 46-49 ◽  
Author(s):  
Toji Tokusu ◽  
Hirokazu Miyabayashi ◽  
Yuji Hiruma ◽  
Hajime Nagata ◽  
Tadashi Takenaka

Electrical and piezoelectric properties of CaBi2Ta2O9-based ceramics have been studied. Temperature dependence of dielectric properties indicated that the Curie temperature, TC, was 923°C. Coercive field, EC, and remanent polarization, Pr, became saturated with increasing temperature. It is expected that higher-temperature than 250°C could promote the domain wall motion during the poling treatment. From resonance and antiresonance measurements, piezoelectric properties such as the maximum phase, max, electromechanical coupling factor, k33, and piezoelectric g constant, g33, were 86.1º, 0.085 and 8.4 × 10-3 V∙m/N, at room temperature, respectively.


2007 ◽  
Vol 558-559 ◽  
pp. 763-766
Author(s):  
Min Soo Kim ◽  
Soon Jong Jeong ◽  
Jae Sung Song

Dense 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 (NKN-5LT) ceramics, as a candidate for leadfree piezoelectric materials, were developed by conventional sintering process. The effect of additions with A-site ions in perovskite structure on abnormal grain growth and piezoelectric properties in NKN-5LT ceramics was investigated. Sintering temperature was lowered by adding A-site ions as a sintering aid. Abnormal grain growth in NKN-5LT ceramics was observed with varying additions. This grain growth behavior was explained in terms of interface reactioncontrolled nucleation and growth. The electrical properties of NKN-5LT ceramics were investigated as a function of concentration of additions. The electromechanical coupling factor and piezoelectric constant of NKN-5LT ceramics were improved in the samples with A-site ions excess NKN-5LT. These results show that the piezoelectric properties of NKN-5LT samples can be improved by control of the microstructures.


2006 ◽  
Vol 45 ◽  
pp. 2412-2421
Author(s):  
Toshio Ogawa

Giant electromechanical coupling factor of k31 mode over 86% was found for (100) Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 and (110) Pb[(Mg1/3Nb2/3)0.74Ti0.26]O3 single-crystal plates poled in the [100] and [110] directions, respectively. The P-E hysteresis loops in the single-crystal plates with giant k31 became asymmetric. Furthermore, the frequency response of impedance in these plates with giant k31 consisted of a single vibration in the length direction. A mechanism to realize giant k31 can be explained by the relationship between the crystal plane and poling direction. In addition, the existence of giant piezoelectric d31 constant was proven by the strain measurement as well as by the impedance measurement.


2011 ◽  
Vol 687 ◽  
pp. 228-232
Author(s):  
Yong Jie Zhao ◽  
Yu Zhen Zhao ◽  
Rong Xia Huang ◽  
Rong Zheng Liu ◽  
He Ping Zhou

(1-x) (K0.475Na0.475Li0.05)(Nb0.975Sb0.025)O3-xmolBiFeO3 (x=0, 0.002, 0.004, 0.006, 0.008) doped with 0.8mol%CuO lead-free piezoelectric ceramics were prepared by the solid state reaction technique. X-ray diffraction patterns suggested that all the ceramics presented perovskite structure. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. The ceramic (x=0.002) near room temperature exhibited excellent electrical properties (piezoelectric constant d33=172pC/N, planar electromechanical coupling factor kp=0.43, and dielectric constant =418). A relatively high mechanical quality factor (Qm=200) was also obtained in this particular composition. All these results revealed that this system might become a promising candidate for lead-free piezoelectric materials.


2017 ◽  
Vol 732 ◽  
pp. 69-75
Author(s):  
Tai Kuang Lee ◽  
Jyun Hung Chen ◽  
Ying Chieh Lee

(Na0.5Bi0.5)0.94Ba0.06TiO3 (NBBT) ceramics doped with 0.1∼2.0 mol.% Ba (Zr0.05Ti0.95)O3 were investigated in terms of the sintering, microstructure, phase transition, and piezoelectric properties. BZT doping has no remarkable effect on the microstructure and densification within the studied doping content. Up to 2 mol.% BZT can dissolve into the lattice of NBBT ceramics, and the structure symmetry is not changed. However, a significant change in the piezoelectric properties took place. The piezoelectric coefficient d33 for the 0.1 wt.% BZT-doped NBBT ceramics sintered at 1150 °C was found to be 120 pC/N and the electromechanical coupling factor kp = 0.24.


2021 ◽  
Vol 11 (1) ◽  
pp. 57-65
Author(s):  
Cong Luo ◽  
Tomoaki Karaki ◽  
Zhuangkai Wang ◽  
Yiqin Sun ◽  
Yohachi Yamashita ◽  
...  

AbstractAfter field cooling (FC) alternating current poling (ACP), we investigated the dielectric and piezoelectric properties of [001]pc-oriented 0.24Pb(In1/2Nb1/2)O3 (PIN)-0.46Pb(Mg1/3Nb2/3)O3 (PMN)-0.30PbTiO3 (PT) (PIMN-0.30PT) single crystals (SCs), which were manufactured by continuous-feeding Bridgman (CF BM) within morphotropic phase boundary (MPB) region. By ACP with 4 kVrms/cm from 100 to 70 °C, the PIMN-0.30PT SC attained high dielectric permittivity (ε33T/ε0) of 8330, piezoelectric coefficient (d33) of 2750 pC/N, bar mode electromechanical coupling factor k33 of 0.96 with higher phase change temperature (Tpc) of 103 °C, and high Curie temperature (TC) of 180 °C. These values are the highest ever reported as PIMN-xPT SC system with Tpc > 100 °C. The enhancement of these properties is attributed to the induced low symmetry multi-phase supported by phase analysis. This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMN-xPT, and provides a route to a wide range of piezoelectric device applications.


2021 ◽  
Author(s):  
Cong Luo ◽  
Tomoaki Karaki ◽  
Zhuangkai Wang ◽  
Yiqin Sun ◽  
Yohachi Yamashita ◽  
...  

Abstract We investigated the dielectric and piezoelectric properties of [001]-oriented 0.24Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PIMN-0.30PT) single crystals (SCs) manufactured by continuous-feeding Bridgman (CF BM) within morphotropic phase boundary (MPB) region after field cooling alternating current poling (FC ACP). By optimized the FC ACP conditions of 4 kVrms/cm from 100 to 70 oC, the PIMN-0.30PT SC process attained ultrahigh dielectric permittivity (εT 33/ε0) of 8330 and piezoelectric coefficient (d33) of 2750 pC/N, and bar mode electromechanical coupling factor k33 of 0.96 with higher phase change temperature (Tpc) of 103 oC, respectively. These values are the highest ever reported as PIMN-xPT system SCs with Tpc > 100 oC. The enhancement of these properties of the PIMN-0.30PT SC is attributed to the induced low symmetry multi-phase supported by phase analysis. This work indicates that FC ACP is a smart and promising method to enhance piezoelectric properties of relaxor-PT ferroelectric SCs including PIMNT, which provide a route to a wide range of piezoelectric device applications.


2012 ◽  
Vol 512-515 ◽  
pp. 1355-1358 ◽  
Author(s):  
Tao Sun ◽  
Ye Jing Dai ◽  
Hong Qiang Wang

The introduction of lithium ion into BNT-BKT-BT ceramics with sol-gel method allows the development of high-performance lead-free piezoelectric ceramics. Nanoscale precursor powders were synthesized through calcination of amorphous gels, and densified ceramics with single perovskite structure were prepared at a relatively low sintering temperature 1110 °C. Crystal grain growth was fully developed with the Li+ addition through scanning electron microscope observation. Enhanced electrical properties, piezoelectric constant d33~184 pC/N and planar electromechanical coupling factor kp~0.30, were obtained for the ceramics.


2014 ◽  
Vol 602-603 ◽  
pp. 822-825
Author(s):  
Ling Peng ◽  
Min Hong Jiang ◽  
Zheng Fei Gu ◽  
Gang Cheng

Lead-free piezoelectric 0.97 K0.5Na0.5NbO3-0.03 AlFeO3(KNN-AF) ceramics were prepared at low temperature of 980 °C to 1020 °C by the conventional ceramic process. The effect of sintering temperature on the crystal structure, density and electrical properties of the ceramics was investigated. The results indicate that KNN-AF ceramics sintered at an low temperature of 1000 °C exhibit high electrical and piezoelectric properties, with piezoelectric constantd33=116ρC/N, and electromechanical coupling factorkp= 32.9%, polarization (Pr) wasPr=21.8 μC/cm2and curie temperatureTC=382°C. This also indicates that KNN-AF ceramics are promising candidate materials for lead-free piezoelectric applications.


Sign in / Sign up

Export Citation Format

Share Document