The Microstructure and Properties of CrNx Films Synthesized by Unbalanced Magnetron Sputtering

2008 ◽  
Vol 373-374 ◽  
pp. 176-179
Author(s):  
Yan Ping Wu ◽  
Yong Xiang Leng ◽  
Sun Hong ◽  
Sheng Fa Zhu ◽  
Nan Huang ◽  
...  

CrNx film was widely used in mechanical engineering field because of its excellent anti-wear and corrosion resistance properties. While most of research was focused on mechanical properties, little attention had been paid to the corrosion resistance and residual stress of CrNx film . In this paper, CrNx films were deposited on silicon wafer (100) and iron substrate by unbalanced magnetron sputtering system (UBMS) at different N2 flow. Then the structure, thickness, residual stress, micro-hardness, wear-resistance and anti-corrosion properties of CrNx films were investigated. The results showed that the phase composition of CrNx films transformed from Cr, single phase Cr2N, Cr2N and CrN coexist to single CrN with the N2 flow rate increasing. The CrNx films composed with Cr2N phase, which deposited at 6 sccm N2 flow, had the highest microhardness and had higher compressive residual stress. Whereas the CrNx films with CrN and Cr2N phase coexist had the best wear and corrosion resistance.

2021 ◽  
pp. 1-32
Author(s):  
Renato Pessoa ◽  
Carlos A H Laurindo ◽  
Michelle S Meruvia ◽  
Ricardo D Torres ◽  
Alexandre Mikowski ◽  
...  

Abstract In this study, the influence of Al2O3 particle amounts on the mechanical, tribological, and corrosion properties of the composite NiP-Al2O3 coating was evaluated. AISI 4140 steel was coated with NiP through an autocatalytic bath with the addition of Al2O3 particles maintained in suspension by mechanical stirring. Following, the coated samples were annealed at 600 °C to increase the hardness and to create an interdiffusion layer, which improves coating adhesion and corrosion resistance. The coating surface was characterized by SEM/EDS, XRD, microhardness, wear resistance, and corrosion tests. The results showed that the coating particles' amount depends on the bath agitation speed, the sample orientation during the deposition, and the volume of Al2O3 particles in the bath composition. Also, the number of particles in the coating affects the deposition kinetics, the thickness of the interdiffusion layer, which affects the wear and corrosion resistance.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yu-Wei Lin ◽  
Chia-Wei Lu ◽  
Ge-Ping Yu ◽  
Jia-Hong Huang

This study aims to investigate the effects of nitrogen flow rate (0–2.5 sccm) on the structure and properties of TiZrN films. Nanocrystalline TiZrN thin films were deposited on Si (001) substrates by unbalanced magnetron sputtering. The major effects of the nitrogen flow rate were on the phase, texture, N/(Ti + Zr) ratio, thickness, hardness, residual stress, and resistivity of the TiZrN films. The nitrogen content played an important role in the phase transition. With increasing nitrogen flow rate, the phase changed from mixed TiZr and TiZrN phases to a single TiZrN phase. The X-ray diffraction results indicated that (111) was the preferred orientation for all TiZrN specimens. The N/(Ti + Zr) ratio of the TiZrN films first increased with increasing nitrogen flow rate and then stabilized when the flow rate further increased. When the nitrogen flow rate increased from 0.4 to 1.0 sccm, the hardness and residual stress of the TiZrN thin film increased, whereas the electrical resistivity decreased. None of the properties of the TiZrN thin films changed with nitrogen flow rate above 1.0 sccm because the films contained a stable single phase (TiZrN). At high nitrogen flow rates (1.0–2.5 sccm), the average hardness and resistivity of the TiZrN thin films were approximately 36 GPa and 36.5 μΩ·cm, respectively.


2006 ◽  
Vol 2006.43 (0) ◽  
pp. 145-146
Author(s):  
Yoshihiko KUBOTA ◽  
Jyunsuke KIUCHI ◽  
Hiroyuki MAGARA ◽  
Eiji SAJI ◽  
Shigeki YOSHINAGA ◽  
...  

2019 ◽  
Vol 823 ◽  
pp. 81-90 ◽  
Author(s):  
Yen Liang Su ◽  
Wen Hsien Kao ◽  
Yu Chien Chang

CN-Nb, CN-Ti and CN-Zr that are respectively doped with Nb, Ti and Zr metal in a CN coating are deposited on SKH51 substrate using DC unbalanced magnetron sputtering (DC-UBM). The coatings’ chemical characterization, morphology, mechanical, tribological and corrosion properties are determined. The XRD analysis shows when a low content of metal is added, the coatings exhibit DLC structures. Result from the incorporation of metals, coatings performed denser texture. Simultaneously, the surface became smoother and denser while surface roughness varied from 0.036 to about 0.020 mm. Various properties are improved over CN coating, CN-Ti has a 64% greater hardness at 21.9 Gpa and adhesion 26% better, with a critical load of 87 N. The elastic recovery ranges from 68% (CN) to 100% (CN-Nb and CN-Zr), the wear rate varies from 0.51 10-6mm3/Nm (CN) to 0.1 10-6mm3/Nm (CN-Zr) and the wear depth is reduced by about 73%. An increase in the elastic recovery gives a decreased wear rate. In addition, the corrosion resistance is increased because there is a decrease in the corrosion current density and the CN-Zr coating performed about 35 times better than a CN coating.


Sign in / Sign up

Export Citation Format

Share Document