Surface Roughness in High Feed Turning with Wiper Insert

2008 ◽  
Vol 375-376 ◽  
pp. 406-410 ◽  
Author(s):  
Zhan Qiang Liu ◽  
Peng Zhang ◽  
Peng Guo ◽  
Xing Ai

Surface roughness in a turning operation is affected by a great number of factors. Two of the most important factors are feed rate and the size of the corner radius. Surface roughness can be roughly determined to increase with the square of the feed rate and decrease with increased size of the corner radius. However, wiper insert geometries changed this relationship with the capability to generate good surface roughness at relatively higher feeds by transferring small part of the round insert edges into the straight cutting edges of the pointed insert. The principle of how wiper inserts behave different from conventional inserts as to the effects on the surface roughness is explored in this paper. Experimental study of the surface roughness produced in the turning of hardened mild steels using coated carbide tools with both conventional and wiper inserts is conducted. The test results prove the effectiveness of the wiper inserts in providing excellent surface roughness. The results also suggest that the use of the wiper insert is an effective way that significantly increases cutting efficiency without changing the machined surface roughness in high feed turning operations.

INSIST ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 71
Author(s):  
Gusri Akhyar Ibrahim ◽  
Arinal Hamni ◽  
Sri Maria Puji Lestari

Magnesium alloy is one of super alloys material which wide used in manufacturing of automotive, biomedic, sport and electronic components. It was due to very light and resistent to corrosion. Surface roughness value has an important role to estabilish the quality of components. To produce a good surface roughness of machined surface, one of the important thing depends on the friction between the cutting tool and workpiece material when cutting process occurred. The aim of this paper is to analyse the surface roughness values of machined surface when drilling of magnesium alloy AZ31 using design of experiment of Taguchi Method. The experimental trials took place at cutting rotation of 635, 970 and 1420 rpm, feed rate of 0.10, 0.18 and 0.24 mm/rev, diameter tool of 10, 12 and 14 mm. The cutting of magnesium alloy was done by using a convensional drilling machine with TCA –35Erlo. Analysis of variance on the data of surface roughness value was done to get which factor is the most significant. The result shows that the feed rate is the most significant factor that contributed on the surface rougness value of machined surface. The minimum surface roughness value was attained at cutting rotation of 970 rpm, feed rate of 0.10 mm/rev and diameter of tool of 14 mm. Therefore, it can be stated that selecting the low feed rate factor produced low surface roughness value. Another hand, using high cutting rotation resulted low surface roughness value.Keywords—drilling, surface roughness, magnesiun AZ31,Taguchi Method


2021 ◽  
Author(s):  
Sonia Ezeddini ◽  
Wajdi Rajhi ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar ◽  
Sahbi Ben Salem

Abstract Ti-6242 is a super alloy which exhibits the best creep resistance among available titanium alloys and is widely used in the manufacture by WEDM of aircraft engine turbomachinery components. However, the final quality of wire EDMed surface is a great challenge as it is affected by various factors that need optimization for surface integrity and machine efficiency improvement. The aim of this study is to investigate the effect of a set of cutting process parameters such as pulse on time (Ton), servo voltage (U), feed rate (S) and flushing pressure (p) on surface roughness (SR) when machining Ti-6242 super alloy by WEDM process using a brass tool electrode and deionized water as a dielectric fluid. WEDM experiments were conducted, and SR (Ra) measurement was carried out using a 3D optical surface roughness-meter (3D–SurfaScan). As a tool to optimize cutting parameters for SR improvement, Taguchi's signal‐to‐noise ratio (S/N) approach was applied using L9 (3^4) orthogonal array and Lower-The-Better (LTB) criteria. Substantially, the findings from current investigation suggest the application of the values 0.9 µs, 100V, 29 mm/min, and 60 bar for Ton, U, S and p cutting parameters, respectively, for producing a good surface finish quality. Percent contributions of the machining parameters on SR (Ra) assessed based on ANOVA analysis are 62.94%, 20.84%, 11.46% and 4.74% for U, S, Ton and p, respectively. Subsequently, accurate predictive model for SR (Ra) is established based on response surface analysis (RSA). The contour plots for SR (Ra) indicate that when flushing pressure p converges to a critical value (80 bar), a poor-quality surface finish is highly expected with the excessive increase in U and S. Electron microscope scanning (SEM) observations have been performed on machined surface for a wide range of cutting parameters to characterize wire EDMed surface of Ti-6242. SEM micrographs indicate that the machined surface acquires a foamy structure and shows white layer and machining-induced damage that the characteristics are highly dependent on cutting parameters. At high servo-voltage, the decrease in pulse on time Ton and feed rate S results in a large decrease in overall machining-induced surface damage. Moreover, for high servo-voltage and feed rate levels, it has been observed that pulse on time could play a role of controlling the surface microcracks density. In fact, the use of a low pulse duration of cut combined with high servo-voltage and feed rate has been shown to inhibit surface microcracks formation giving the material surface a better resistance to cracking than at high pulse duration.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Yi ◽  
Li Jiao ◽  
Xibin Wang ◽  
Junfeng Xiang ◽  
Meixia Yuan ◽  
...  

Due to the widespread use of high-accuracy miniature and micro features or components, it is required to predict the machined surface performance of the micro milling processes. In this paper, a new predictive model of the surface roughness is established by response surface method (RSM) according to the micro milling experiment of 6061-T6 aluminum alloy which is carried out based on the central composite circumscribed (CCC) design. Then the model is used to analyze the effects of parameters on the surface roughness, and it can be concluded that the surface roughness increases with the increasing of the feed rate and the decreasing of the spindle speed. At last, based on the model the contour map of the surface roughness and material removal rate is established for optimizing the process parameters to improve the cutting efficiency with good surface roughness. The prediction results from the model have good agreement with the experimental results.


2011 ◽  
Vol 299-300 ◽  
pp. 1060-1063 ◽  
Author(s):  
Y.X. Yao ◽  
Jin Guang Du ◽  
Jian Guang Li ◽  
H. Zhao

Mill-grinding experiments were carried out on SiCp/Al to investigate effects of mill-grinding parameters and grinding wheel parameters on machined surface roughness in this paper. The machined surface topography was also analyzed. Experimental results show that surface roughness increases with increasing feed rate and the depth of the mill-grinding. The effect of mill-grinding speed on surface roughness is low. The machined surface reveals many defects. The fine grit diamond grinding wheel can reduce the surface roughness and decrease the machined surface defect. Compared to the vitrified bonded diamond and electroplated diamond grinding wheels used in the experiment, the resin-based diamond grinding wheel produces a better surface.


2010 ◽  
Vol 150-151 ◽  
pp. 1667-1672 ◽  
Author(s):  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
Mohd Shahir Kasim ◽  
T.K. Soon ◽  
Gusri Akhyar Ibrahim ◽  
...  

The purpose of this study is to investigate the effect of turning parameters on the surface integrity of Inconel 718. The turning parameters studied were cutting speed of 90, 120, 150 m/min, feed rate of 0.15, 0.25, 0.25mm/rev and depth of cut of 0.3, 0.4, 0.5 mm under minimum quantity lubricant (MQL) using coated carbide tool. surface response methodology (RSM) design of experiment using Box-Behnken approach has been employed consisting of various combination of turning parameters Surface roughness, surface topography, microstructure and the micro hardness of the machined surface were studied after the machining process. Feed rate was found to be the most significant parameter affecting the surface roughness. The optimum parameter was obtained with Ra equal to 0.243 µm at cutting speed of 150 m/min, feed rate of 0.25 mm/rev and depth of cut of 0.3mm. A mathematical model for surface roughness was developed using Response Surface Methodology. The effect of turning parameters and factor interactions on surface roughness is presented in 3D graphical form, which helps in selecting the optimum process parameters to achieve the desired surface quality.


2019 ◽  
Vol 895 ◽  
pp. 26-31
Author(s):  
R. Suresh ◽  
L. Shivaramu ◽  
N.G. Siddesh Kumar ◽  
T.N. Srikantha Dath

In the present study an attempt has been made to investigate the effect of process parameters on surface roughness and cutting forces generation in machining of Duplex Stainless Steel (DSS 2205) grade material with TiN coated carbide tool. Taguchi technique is used for optimizing the process parameters. L27 orthogonal array was used to conduct the experimental trials. Cutting forces recorded using piezo-electric based mill tool dynamometer and surface roughness measured using surface roughness measuring instrument. The obtained results indicated that the cutting force increases with increase in feed rate and depth of cut whereas cutting forces decreases with increase in cutting speed. Surface roughness decreases with increase in cutting speed and low feed rate. Scanning Electroscope Microscopic (SEM) images indicates the feed marks, undeformed material and patches on the machined surface. The formation of material side flow and burrs on the feed marks ridges observed at higher cutting speed, low feed rate and depth of cut. It is mainly due to the material behavior like elastic-plastic deformation of the surface layer. The material side flow causes the considerable deterioration of surface quality of the DSS 2205 steel.


Minimum quantity lubrication (MQL) is an eco-friendly method, where a small amount of fluid was sprayed to cutting edge in mist form with the aid of the air. The foregoing studies revealed that inappropriate machining parameters without the assistance of the cutting fluid methods became a major challenge in milling aluminum alloy 7075-T6. The paper presents the findings of the experimental work to assess the effect of machining parameters towards cutting tool life and machined surface roughness in milling aluminum alloy 7075-T6 at high cutting speed under MQL condition. An eight-run experiment was designed according to full factorial design based upon two levels of cutting speed (500 m/min, 600 m/min), feed rate (0.12 mm/tooth, 0.15 mm/tooth), and axial depth of cut (1.40 mm, 1.70 mm) and then analyzed employed ANOVA to determine the significant machining parameters. The cutting tool life and machined surface roughness were assigned by the rejection criterion of tool flank wear in the milling operation. The optical microscope and portable surface roughness tester were applied to analyze tool wear and average surface roughness value. Cutting speed and feed rate were significantly contributing to the tool life and surface roughness. The longest tool lifespan of 20.14 minutes and lowest surface roughness value of 0.569 µm were obtained at a speed of 500 and 600 m/min, respectively, with a low combination of the rest of parameter which are 0.12 mm/tooth and 1.40 mm.


2014 ◽  
Vol 657 ◽  
pp. 63-67
Author(s):  
Tatiana Ivchenko ◽  
Vadim Boguslavskiy ◽  
Irina Petryaeva ◽  
Dmitriy Mihaylov

The Method of Estimation of Possibilities of the Machining Productivity Rise Taking into Account the Action of Cutting Fluid (TCF) and Coated Carbide Cutting Tools (CCT) for Rough and Fin-Ish Turning Corrosion-Proof, Heat Resisting and Stainless Steels and Alloys is Perfected. the Factor of Machining Productivity Rise at the Expense of Use TCF and CCT is Set. it is Executed Theoretical and Experimental Researches of Influence of the Cutting Regimes on the Cutting Temperature and the Ma-Chined Surface Roughness at Turning of Different Hard-Processing Steels and Alloys. Dependences of the Cutting Temperature and the Machined Surface Roughness on Cutting Speed, Feed and Depth Taking into Account the Action of TCF and CCT are Set. the Factors of Decline of the Machined Surface Roughness and the Cutting Temperature are Certain at the Use of TCF with Different Cooling and Lubri-Cant Properties. the Factors of Machining Productivity Rise are Certain under Various Conditions of the Rough and Finish Turning Different Corrosion - Proof, Heat Resisting and High - Resistance Steels and Alloys Depending on the Factor of the Cutting Temperature Decline and Factor of the Tool Life Rise. the Set Factor of Machining Productivity Rise Allows Estimating Efficiency of the Use of Various TCF and CCT for Different Hard-Processing Materials.


2020 ◽  
Vol 71 (12) ◽  
pp. 1980-1988 ◽  
Author(s):  
Jintao Niu ◽  
Zhanqiang Liu ◽  
Guijie Wang ◽  
Weimin Huang ◽  
Ying Xu

2010 ◽  
Vol 126-128 ◽  
pp. 885-890
Author(s):  
K.P. Somashekhar ◽  
N. Ramachandran ◽  
Jose Mathew

This work is on the preparation of microelectrodes for μ-EDM operation using μ-WEDG process. Electrodes of Ø500 μm are fabricated with various discharge energy machining conditions. Effects of gap voltage, capacitance & feed rate on the surface finish of the electrodes and overcut of the thus produced micro holes are investigated. The profile of microelectrodes is measured using surface roughness tester with 2μm stylus interfaced with SURFPAK software. The study demonstrated that for brass electrodes an arithmetic average roughness value as low as 1.7μm and an overcut of 3 µm could be achieved. The significant machining parameters are found using ANOVA. Surface of the produced microelectrodes are examined using Scanning Electron Microscope. μ-WEDG process parameters could be adjusted to achieve good surface integrity on microelectrodes. Experimental results showed that the surface roughness of microelectrodes depended primarily on feed rate of the electrode. The observations showed the clear and quantitative correlation existing between the micrometer level surface quality and process parameters. The resulting microelectrodes are found to be of exceptionally high quality and could be used for μ- EDM operation on different types of work materials.


Sign in / Sign up

Export Citation Format

Share Document