A Broadband Frequency Piezoelectric Vibration Energy Harvester

2011 ◽  
Vol 483 ◽  
pp. 626-630 ◽  
Author(s):  
Hua An Ma ◽  
Jing Quan Liu ◽  
Gang Tang ◽  
Chun Sheng Yang ◽  
Yi Gui Li ◽  
...  

As the low-power wireless sensor components and the development of micro electromechanical systems, long-term supply of components is a major obstacle of their development. One of solutions to this problem is based on the environmental energy collection of piezoelectric vibration energy harvesting. Currently, frequency band of piezoelectric vibration energy harvester is narrow and the frequency is high, which is not fit for the vibration energy acquisition in the natural environment. A piezoelectric vibration energy harvester with lower working frequency and broader band is designed and a test system to analyze the harvester is presented in this paper. The traditional mass is replaced by a permanent magnet in this paper, While other two permanent magnets are also placed on the upper and above of the piezoelectric cantilever. Experiments showed, under the 0.5g acceleration, compared with the traditional non-magnetic piezoelectric vibration energy harvesting, a piezoelectric cantilever (length 40mm, width 8mm, thickness 0.8mm) has a peak-peak voltage of 32.4V, effectively enlarges working frequency band from 67HZ-105HZ to 63HZ-108HZ.

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1301
Author(s):  
Zhang Qichang ◽  
Yang Yang ◽  
Wang Wei

In order to make a piezoelectric vibration energy harvester collect more energy on a broader frequency range, nonlinearity is introduced into the system, allowing the harvester to produce multiple steady states and deflecting the frequency response curve. However, the harvester can easily maintain intra-well motion rather than inter-well motion, which seriously affects its efficiency. The aim of this paper is to analyze how to take full advantage of the nonlinear characteristics to widen the bandwidth of the piezoelectric vibration energy harvester and obtain more energy. The influence of the inter-permanent magnet torque on the bending of the piezoelectric cantilever beam is considered in the theoretical modeling. The approximate analytical solutions of the primary and 1/3 subharmonic resonance of the harvester are obtained by using the complex dynamic frequency (CDF) method so as to compare the energy acquisition effect of the primary resonance and subharmonic resonance, determine the generation conditions of subharmonic resonance, and analyze the effect of primary resonance and subharmonic resonance on broadening the bandwidth of the harvester under different external excitations. The results show that the torque significantly affects the equilibrium point and piezoelectric output of the harvester. The effective frequency band of the bistable nonlinear energy harvester is 270% wider than that of the linear harvester, and the 1/3 subharmonic resonance broadens the band another 92% so that the energy harvester can obtain more than 0.1 mW in the frequency range of 18 Hz. Therefore, it is necessary to consider the influence of torque when modeling. The introduction of nonlinearity can broaden the frequency band of the harvester when it is in primary resonance, and the subharmonic resonance can make the harvester obtain more energy in the global frequency range.


Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices and wireless sensors due to high power density, easy integration, simple configuration and other outstanding features. Among piezoelectric vibration energy harvesting structures, cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model of mesoscale piezoelectric energy harvester is proposed, which focuses on the multi-directional vibration collection and low resonant frequency. To verify the output performances of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit with high power collection rate is adopted as collection system. This harvester is beneficial to the further application of devices working with continuous vibrations and low power requirements.


2019 ◽  
Vol 30 (7) ◽  
pp. 1105-1114 ◽  
Author(s):  
Dongxing Cao ◽  
Xiangying Guo ◽  
Wenhua Hu

The transformation of waste vibration energy into low-power electricity has been intensely researched over the last decade to enable self-sustained wireless electronic components. Many kinds of nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. The negative stiffness vibration isolator, as a kind of passive vibration isolator, has undergone extensive investigation because of its low-frequency isolator characteristics. In this article, a novel broadband piezoelectric vibration energy harvester, which can be used for low-frequency ambient mechanical energy harvesting, is designed, and its dynamic responses are analyzed based on the advantage of the negative stiffness vibration isolator. The multi-scale perturbation method is applied to solve the electromechanical equations of the piezoelectric vibration energy harvester and obtain approximate analytical solutions. Solutions based on the analytical method and numerical simulations reveal the characteristics of significant broadband performance. The effects of the various system parameters on the frequency responses and output voltage of the piezoelectric vibration energy harvester system are investigated in detail, and the vibration isolation ability is verified by experimental measurements. It was concluded that the proposed piezoelectric vibration energy harvester achieved broadband vibration energy harvesting in the low-frequency vibration range.


Author(s):  
Enrico Bischur ◽  
Sebastian Pobering ◽  
Markus Menacher ◽  
Norbert Schwesinger

This paper describes an energy harvester working with the repeated deflection of a piezoelectric cantilever. The harvester works in flowing media like wind or water. The bending of the cantilever is driven by vortices traveling across it. The presented device is an easy solution for vibration energy harvesting without the need of external mechanical vibration. The working principle was determined with macroscopic models in wind and water channels. The harvester does not need in general a mechanical adaption to the external vibration frequency, because it oscillates always with its resonance frequency at different flow velocities. Furthermore a self synchronization of cantilevers arranged beside each other could be observed in water. A second system was able to supply a load of approximatly 2 mW in a wind channel at a flow velocity of 8 m/s.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 327
Author(s):  
Aicheng Zou ◽  
Zhong Liu ◽  
Xingguo Han

Existing piezoelectric vibration energy harvesting circuits require auxiliary power for the switch control module and are difficult to adapt to broadband piezoelectric vibration energy harvesters. This paper proposes a self-powered and low-power enhanced double synchronized switch harvesting (EDSSH) circuit. The proposed circuit consists of a low-power follow-up switch control circuit, reverse feedback blocking-up circuit, synchronous electric charge extraction circuit and buck-boost circuit. The EDSSH circuit can automatically adapt to the sinusoidal voltage signal with the frequency of 1 to 312.5 Hz that is output by the piezoelectric vibration energy harvester. The switch control circuit of the EDSSH circuit works intermittently for a very short time near the power extreme point and consumes a low amount of electric energy. The reverse feedback blocking-up circuit of the EDSSH circuit can keep the transmission efficiency at the optimal value. By using a charging capacitor of 1 mF, the charging efficiency of the proposed EDSSH circuit is 1.51 times that of the DSSH circuit.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Aicheng Zou ◽  
Jiefeng Li ◽  
Xingguo Han ◽  
Qunying Wang

This letter reports a piezoelectric vibration energy harvester which energy conversion efficiency is significantly improved by arraying piezoelectric sheets on cantilever beams, and the operation frequency band is widened by applying two-segment cantilever beams. A prototype is developed and tested. In this case, two group piezoelectric arrays are combined on the cantilever beams with the optimum load resistance. The total output power remains above 6.54 mW within the operation frequency band ranges from 27.5 Hz to 37.5 Hz when the generator is under an acceleration of 0.7 g and reaches two power peaks: 20.5 mW at 29.2 Hz and 12.95 mW at 35.4 Hz.


Sign in / Sign up

Export Citation Format

Share Document