TiO2 Whisker Prepared with Tataniferous Blast-Furnance

2012 ◽  
Vol 512-515 ◽  
pp. 191-194
Author(s):  
Wen Li Zhang ◽  
Sui Jing Gao ◽  
Ying Na Zhao

Using titaniferous blast-furnace slag (44-70 wt %), quartz, boric acid, and borax as the main raw materials, composition selecting in the phase-separation region of the Na2O-CaO-Al2O3-B2O3 -SiO2-TiO2 system, the basic glasses were prepared through mixed batches and melted at 1200 oC, then TiO2 whiskers could be achieved by heat-treatment the glass samples. The phase and morphology of samples were analyzed by XRD and SEM. The results indicated: when the composition of samples were selected in the phase-separation region and the ratio of SiO2/ B2O3 was between 1.64-1.87, at 850 °C heat-treatment, the diameter of whiskers was about 0.5μ~1μ and the length-diameter ratio was more than 50.

Author(s):  
Jean Noël Yankwa Djobo ◽  
Dietmar Stephan

AbstractThis work aimed to evaluate the role of the addition of blast furnace slag for the formation of reaction products and the strength development of volcanic ash-based phosphate geopolymer. Volcanic ash was replaced by 4 and 6 wt% of ground granulated blast furnace slag to accelerate the reaction kinetics. Then, the influence of boric acid for controlling the setting and kinetics reactions was also evaluated. The results demonstrated that the competition between the dissolution of boric acid and volcanic ash-slag particles is the main process controlling the setting and kinetics reaction. The addition of slag has significantly accelerated the initial and final setting times, whereas the addition of boric acid was beneficial for delaying the setting times. Consequently, it also enhanced the flowability of the paste. The compressive strength increased significantly with the addition of slag, and the optimum replaced rate was 4 wt% which resulted in 28 d strength of 27 MPa. Beyond that percentage, the strength was reduced because of the flash setting of the binder which does not allow a subsequent dissolution of the particles and their precipitation. The binders formed with the addition of slag and/or boric acid are beneficial for the improvement of the water stability of the volcanic ash-based phosphate geopolymer.


2020 ◽  
Vol 39 (1) ◽  
pp. 539-544
Author(s):  
Yi-Ci Wang ◽  
Pei-Jun Liu ◽  
Guo-Ping Luo ◽  
Zhe Liu ◽  
Peng-Fei Cao

AbstractCaO–MgO–Al2O3–SiO2 glass-ceramics with diopside as the main crystalline phase were prepared by melting blast furnace slag obtained from Baotou Iron and Steel Company. The effect of heat treatment on the crystallization behavior of glass-ceramics, containing a large proportion of melted blast furnace slag, was studied by means of differential thermal analysis and scanning electron microscopy. The optimum heat-treatment regime was obtained by orthogonal experimental results for glass-ceramics in which blast furnace slag comprised 70% of the composition and 1% Cr2O3 and 4% TiO2 were used as nucleating agents. The nucleation temperature was 750°C for 2.5 h and the crystallization temperature was 930°C for 1 h. Under this regime, the performance of the glass-ceramic was better than that of other groups in the orthogonal experiment.


2018 ◽  
Vol 931 ◽  
pp. 578-582
Author(s):  
Natalia D. Yatsenko ◽  
N.A. Vil'bitskaya ◽  
A.I. Yatsenko

The article deals with the use of blast furnace slag and mineralising additives as raw materials for the production of building materials. Innovative technologies of brick production from natural raw materials and industrial wastes are developed.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Yici Wang ◽  
Qi Jiang ◽  
Guoping Luo ◽  
Wenwu Yu ◽  
Yan Ban

In the process of glass-ceramics prepared with Baotou steel blast furnace slag, quartz sand, and other raw materials by melting method, the mutual influence of the special components such as CaF2, REXOY, TiO2, K2O, and Na2O in the blast furnace slag on the crystallization behavior of parent glass was investigated using differential thermal analysis (DTA) and X-ray diffraction (XRD). The results show that the special components in slag can reduce the crystallization temperature and promote crystallization of glass phase, which belongs to surface crystallization of glass, and they cannot play the role of the nucleating agent; the major crystal phase composed of diopside, diopside containing aluminum and anorthite, is slightly different from the expected main crystal phase of diopside. Therefore, the nucleating agents of proper species and quantity must be added into the raw materials in order to obtain glass-ceramics. The results have important theoretical guidance meaning for realizing industrial production of Baotou steel blast furnace slag glass-ceramics preparation.


2019 ◽  
pp. 01-05
Author(s):  
Prof. Nitin Sherje

As we know that cement a famous binding material. It is a significant structural building material. Raw materials for cement creation are limestone, sand or clay, bauxite, and iron mineral, and may incorporate sheets, chalk, marl, shale, clay additionally impact blast furnace slag. Chemical analysis of cement raw materials gave knowledge into the substance properties of cement.


2019 ◽  
Vol 45 (11) ◽  
pp. 13692-13700 ◽  
Author(s):  
Wentao Zhang ◽  
Feng He ◽  
Yongli Xiao ◽  
Mongqin Xie ◽  
Junlin Xie ◽  
...  

2019 ◽  
Vol 138 (6) ◽  
pp. 4571-4583
Author(s):  
Anna A. Kuśnierz ◽  
Magdalena Szumera ◽  
Magda Kosmal ◽  
Paweł Pichniarczyk

Abstract A glass set with a high content of blast-furnace slag and a reduced amount of traditional raw materials requires optimization of the raw material composition and adjustment of its specificity to the temperature regime of melting, homogenizing and clarifying the glass mass. The introduction of an increased amount of blast-furnace slag allows to reduce the cost of raw materials: soda, limestone and high-class sand, reduce energy costs, whose consumption significantly decreases and reduces CO2 emissions in line with EU requirements. The tests of thermal analysis of a glass set with different contents of Calumite are aimed at learning the mechanism of its operation by determining the changes caused by its different presence in the course of subsequent reactions between the components of the glass set. Analysis of the influence of the addition of different Calumite slag contents treated as a substitute for the raw material on the melting process of glassware sets was analyzed. The tests were carried out using differential thermal analysis (DTA) and thermogravimetry (TG) based on the model glass [mass%]: 73.0% SiO2, 1.0% Al2O3, 10.0% CaO, 2.0% MgO and 14.0% Na2O. The effect of combining Calumite with sulphate and multi-component fining agent—mixtures of As2O3, Sb2O3, NaNO3 in proportions of 1:1:1 for chemical reaction and phase transformation, was investigated.


2010 ◽  
Vol 105-106 ◽  
pp. 787-790 ◽  
Author(s):  
Yu Li ◽  
Yan Bing Zong ◽  
Da Qiang Cang

Performance of slag glass ceramic largely depends on the phase separation structure formed in heat treatment. In the paper, the crystallization properties and its relation with phase separation structure of blast furnace slag (BFS) are researched. Three water-quenched samples and an air-quenched sample were respectively prepared. After conducting temper experiments and analyzing XRD and DTA results, the following conclusions have been acquired. Two crystallization regions exist in BFS system. In parent glass with phase separation structure, Ca3Mg(SiO4)2 and Ca2MgSi2O7 would form at lower temperature but Ca2Al2Si2O7 would appear at higher temperature than that in parent glass with homogenous structure. The former contributes to the existence of lower polymerized [SiO4] units and more Ca2+ or Mg2+ in Ca-rich phase of phase separation glass, while the later is due to the diffusing hindrance of [AlO4] in diffusing path and interface resistance in phase separation structure.


Sign in / Sign up

Export Citation Format

Share Document