The Electromechanical Behavior of Dielectric Elastomer Actuator Stiffened by Fiber

2018 ◽  
Vol 765 ◽  
pp. 12-15 ◽  
Author(s):  
Long Zhou Lyu ◽  
Shi Jie Zhu

Dielectric elastomer is functional material that can convert electrical energy to mechanical energy. In this paper, a cylindrical dielectric elastomer actuator was designed and fabricated by using fiber stiffening to improve its electromechanical performance. the effects of pre-straining, rate of applied voltage and fiber stiffening on the electromechanical behavior were investigated by the experiments. It was found that the best applied load for pre-straining was 524g based on the electromechanical tests at the applied voltage rate of 10V/s. The maximum actuated strain decreased with an increase in rate of applied voltage. When the fibers were embedded in the dielectric elastomer actuator, the maximum actuated strain was 27.5%, doubled the value of 14% without fiber stiffening at the applied voltage rate of 20V/s.

2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


Author(s):  
Heather Lai ◽  
Chin An Tan ◽  
Yong Xu

Human walking requires sophisticated coordination of muscles, tendons, and ligaments working together to provide a constantly changing combination of force, stiffness and damping. In particular, the human knee joint acts as a variable damper, dissipating greater amounts of energy when the knee undergoes large rotational displacements during walking, running or hopping. Typically, this damping results from the dissipation, or loss, of metabolic energy. It has been proven to be possible however; to collect this otherwise wasted energy through the use of electromechanical transducers of several different types which convert mechanical energy to electrical energy. When properly controlled, this type of device not only provides desirable structural damping effects, but the energy generated can be stored for use in a wide range of applications. A novel approach to an energy harvesting knee joint damper is presented using a dielectric elastomer (DE) smart material based electromechanical transducer. Dielectric elastomers are extremely elastic materials with high electrical permittivity which operate based on electrostatic effects. By placing compliant electrodes on either side of a dielectric elastomer film, a specialized capacitor is created, which couples mechanical and electrical energy using induced electrostatic stresses. Dielectric elastomer energy harvesting devices not only have a high energy density, but the material properties are similar to that of human tissue, making it highly suitable for wearable applications. A theoretical framework for dielectric elastomer energy harvesting is presented along with a mapping of the active phases of the energy harvesting to the appropriate phases of the walking stride. Experimental results demonstrating the energy harvesting capability of a DE generator undergoing strains similar to those experienced during walking are provided for the purpose of verifying the theoretical results. The work presented here can be applied to devices for use in rehabilitation of patients with muscular dysfunction and transfemoral prosthesis as well as energy generation for able-bodied wearers.


2015 ◽  
Vol 3 (18) ◽  
pp. 9468-9479 ◽  
Author(s):  
Dan Yang ◽  
Fengxing Ge ◽  
Ming Tian ◽  
Nanying Ning ◽  
Liqun Zhang ◽  
...  

A dielectric elastomer actuator with excellent electromechanical performance was fabricated by incorporating modified barium titanate into slide-ring materials with necklace-like molecular structure.


2013 ◽  
Vol 81 (4) ◽  
Author(s):  
Tiefeng Li ◽  
Zhanan Zou ◽  
Guoyong Mao ◽  
Shaoxing Qu

High voltage is required for the existing dielectric elastomer (DE) actuators to convert electrical energy to mechanical energy. However, maintaining high voltage on DE membranes can cause various failures, such as current leakage and electrical breakdown, which limits their practical applications, especially in small-scale devices. To overcome the above drawback of DE actuators, this paper proposes a new actuation method using DE membranes with a properly designed bistable structure. Experiment shows that the actuator only requires a high-voltage pulse to drive the structure forward and backward with electromechanical snap-through instability. The actuator can maintain its stroke when the voltage is removed. An analytical model based on continuum mechanics is developed, showing good agreement with experiment. The study may inspire the design and optimization of DE transducers.


2009 ◽  
Vol 1218 ◽  
Author(s):  
Adrian Koh

AbstractMechanical energy can be converted to electrical energy using a dielectric elastomer generator (DEG). The maximum amount of energy that can be harvested from a DEG is constrained by various modes of failure and operational limits. Known limiting mechanisms include electrical breakdown, electromechanical instability, loss of tension and rupture by stretch. These limits define a cycle where maximum energy can be harvested. The cycle was represented on work-conjugate planes, which can be used as a guide for the design of practical cycles. The amount of energy harvested is larger when a DEG is subject to equal-biaxial stretching.


Author(s):  
Chen Yi ◽  
Lorenzo Agostini ◽  
Marco Fontana ◽  
Giacomo Moretti ◽  
Rocco Vertechy

Dielectric Elastomer Transducers (DETs) are solid-state electrostatic devices with variable capacitance that can convert electrical energy into mechanical energy and vice-versa. Recent theoretical and experimental studies demonstrated that DETs made of materials like silicone elastomer and natural rubber can operate at very high energy densities. Practical applicability of DETs is strongly affected by their reliability and lifetime, which depend on the maximum strain and electrical loads that are cyclically applied on such devices. To date, very little knowledge and experimental results are available on the subject. In this context, this paper reports on an extensive lifetime assessment campaign conducted on frame-stretched circular DET specimens made of a commercial styrenic rubber membrane subjected to cyclic electrical loading.


2017 ◽  
Vol 33 (5) ◽  
pp. 1263-1271 ◽  
Author(s):  
Guo-Ying Gu ◽  
Ujjaval Gupta ◽  
Jian Zhu ◽  
Li-Min Zhu ◽  
Xiangyang Zhu

2021 ◽  
Vol 13 (17) ◽  
pp. 9881
Author(s):  
Kui Di ◽  
Kunwei Bao ◽  
Haojie Chen ◽  
Xinjun Xie ◽  
Jianbo Tan ◽  
...  

The dielectric elastomer generator (DEG) has attracted attention in converting mechanical energy into electrical energy, due to its high energy density, fast response, and light weight, which together make DEG a promising technology for electromechanical conversion. In this article, recent research papers on DEG are reviewed. First, we present the working principles, parameters, materials, and deformation modes of DEG. Then, we introduce DEG prototypes in the field of collecting mechanical energy, including small-scale applications for wind energy and human motion energy, and large-scale applications for wave energy. At the end of the review, we discuss the challenges and perspectives of DEG. We believe that DEG will play an important role in mechanical energy harvesting in the future.


Crystals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 179 ◽  
Author(s):  
Wenfeng Liu ◽  
Lu Cheng ◽  
Shengtao Li

Piezoelectric ceramics is a functional material that can convert mechanical energy into electrical energy and vice versa. It can find wide applications ranging from our daily life to high-end techniques and dominates a billion-dollar market. For half a century, the working horse of the field has been the polycrystalline PbZr1−xTixO3 (PZT), which is now globally resisted for containing the toxic element lead. In 2009, our group discovered a non-Pb piezoelectric material, (BaCa)(ZrTi)O3 ceramics (BZT-BCT), which exhibits an ultrahigh piezoelectric coefficient d33 of 560–620 pC/N. This result brought extensive interest in the research field and important consequences for the piezoelectric industry that has relied on PZT. In the present paper, we review the recent progress, both experimental and theoretical, in the BZT-BCT ceramics.


2019 ◽  
Vol 804 ◽  
pp. 63-67
Author(s):  
Heng Tong Cheng ◽  
Zhen Qiang Song ◽  
Shijie Zhu ◽  
Kazuhiro Ohyama

Dielectric elastomer generators (DEGs) are based on the electromechanical response of the dielectric elastomer film sandwiched between the compliant electrodes on each side, which are capable of converting mechanical energy from diverse sources (e.g, ocean wave) into electrical energy. In essence, DEG is a voltage up-converter using mechanical energy to increase the electrical energy of the charge on a soft capacitor. We evaluated the effect of input voltage and the pre-stretch ratios on energy conversion efficiency of DEG. With a power supply of 2.2kV and pre-stretch ratio of 2, the maximum net electrical energy density and energy conversion efficiency in a single harvesting cycle were measured to be 413 J/kg and 15.8%, respectively. The experimental results showed that, with the higher input voltage and the larger stretch ratio range, higher the energy conversion performance of DEG can be achieved.


Sign in / Sign up

Export Citation Format

Share Document