modes of failure
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 114)

H-INDEX

32
(FIVE YEARS 5)

Landslides ◽  
2021 ◽  
Author(s):  
Lingfeng He ◽  
John Coggan ◽  
Doug Stead ◽  
Mirko Francioni ◽  
Matthew Eyre

AbstractThis paper focuses on numerical modelling and back analysis of the Hell’s Mouth landslide to provide improved understanding of the evolution of a section of the north coast of Cornwall, UK. Discontinuity control is highlighted through the formation of a ‘zawn’ or inlet, the occurrence of two successive landslides and evidence of ongoing instability through opening of tension cracks behind the cliff top. Several integrated remote sensing (RS) techniques have been utilised for data acquisition to characterise the slope geometry, landslide features and tension crack extent and development. In view of the structural control on the rock slope failures, a 3D distinct element method (DEM) code incorporating a discrete fracture network and rigid blocks has been adopted for the stability analysis. The onset and opening of tension cracks behind the modelled slope failure zones has also been studied by analysing the displacements of two adjoining landslide blocks, between which, a joint-related tension crack developed. In addition, a sensitivity analysis has been undertaken to provide further insight into the influence of key discontinuity parameters (i.e. dip, dip direction, persistence and friction angle) on the stability of this section of the coastline. Numerical modelling and field observations indicate that block removal and preferential erosion along a fault resulted in the formation of the inlet. The development of the inlet provides daylighting conditions for discontinuities exposed on the inlet slope wall, triggering the initial landslide which occurred on 23rd September 2011. Numerical modelling, and evidence from a video of the initial landslide, suggests that the cliff instability is characterised by a combination of planar sliding, wedge sliding and toppling modes of failure controlled by the discrete fracture network geometry.


2021 ◽  
Vol 7 ◽  
pp. e808
Author(s):  
Siti Syahara Mad Yusoh ◽  
Dzuraidah Abd Wahab ◽  
Hiyam Adil Habeeb ◽  
Abdul Hadi Azman

The conventional component repair in remanufacturing involves human decision making that is influenced by several factors such as conditions of incoming cores, modes of failure, severity of damage, features and geometric complexities of cores and types of reparation required. Repair can be enhanced through automation using additive manufacturing (AM) technology. Advancements in AM have led to the development of directed energy deposition and laser cladding technology for repair of damaged parts and components. The objective of this systematic literature review is to ascertain how intelligent systems can be integrated into AM-based repair, through artificial intelligence (AI) approaches capable of supporting the nature and process of decision making during repair. The integration of intelligent systems in AM repair is expected to enhance resource utilization and repair efficiency during remanufacturing. Based on a systematic literature review of articles published during 2005–2021, the study analyses the activities of conventional repair in remanufacturing, trends in the applications of AM for repair using the current state-of-the-art technology and how AI has been deployed to facilitate repair. The study concludes with suggestions on research areas and opportunities that will further enhance the automation of component repair during remanufacturing using intelligent AM systems.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3967
Author(s):  
Alia Ruzanna Aziz ◽  
Jin Zhou ◽  
David Thorne ◽  
Wesley James Cantwell

This paper investigates size effects on the mechanical response of additively manufactured lattice structures based on a commercially available polylactic acid (PLA) polymer. Initial attention is focused on investigating geometrical effects in the mechanical properties of simple beams and cubes. Following this, a number of geometrically scaled lattice structures based on the body-centered cubic design were manufactured and tested in order to highlight size effects in their compression properties and failure modes. A finite element analysis was also conducted in order to compare the predicted modes of failure with those observed experimentally. Scaling effects were observed in the compression response of the PLA cubes, with the compression strength increasing by approximately 19% over the range of scale sizes investigated. Similar size-related effects were observed in the flexural samples, where a brittle mode of failure was observed at all scale sizes. Here, the flexural strength increased by approximately 18% when passing from the quarter size sample to its full-scale counterpart. Significant size effects were observed following the compression tests on the scaled lattice structures. Here, the compression strength increased by approximately 60% over the four sample sizes, in spite of the fact that similar failure modes were observed in all samples. Finally, reasonably good agreement was observed between the predicted failure modes and those observed experimentally. However, the FE models tended to over-estimate the mechanical properties of the lattice structures, probably as a result of the fact that the models were assumed to be defect free.


2021 ◽  
Vol 83 (6-7) ◽  
Author(s):  
Adam Le ◽  
Aaron A. King ◽  
Felicia Maria G. Magpantay ◽  
Afshin Mesbahi ◽  
Pejman Rohani

AbstractWhen modeling infectious diseases, it is common to assume that infection-derived immunity is either (1) non-existent or (2) perfect and lifelong. However there are many diseases in which infection-derived immunity is known to be present but imperfect. There are various ways in which infection-derived immunity can fail, which can ultimately impact the probability that an individual be reinfected by the same pathogen, as well as the long-run population-level prevalence of the pathogen. Here we discuss seven different models of imperfect infection-derived immunity, including waning, leaky and all-or-nothing immunity. For each model we derive the probability that an infected individual becomes reinfected during their lifetime, given that the system is at endemic equilibrium. This can be thought of as the impact that each of these infection-derived immunity failures have on reinfection. This measure is useful because it provides us with a way to compare different modes of failure of infection-derived immunity.


Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 480-491
Author(s):  
Andrey Akhmeteli ◽  
Andrew V. Gavrilin

The centuries-old idea of a lighter-than-air vacuum balloon has not materialized yet as such structure needs to be both light enough to float in the air and strong enough to withstand atmospheric pressure. We propose a design of a rigid spherical sandwich shell and demonstrate that it can satisfy these stringent conditions with commercially available materials, such as boron carbide ceramic and aluminum alloy honeycomb. A finite element analysis was employed to demonstrate that buckling can be prevented in the proposed structure. Also discussed are other modes of failure and approaches to manufacturing.


2021 ◽  
Vol 89 (1) ◽  
Author(s):  
Richard M. Christensen

Abstract The recently developed general materials failure theory is specialized to the two-dimensional state of plane stress. It takes a form that is virtually no more involved than that of the Mises criterion. Yet it remains applicable to the entire range of materials types and thus retains that generality. The Mises form has absolutely no capability for generality. This plane stress form of the new failure theory reveals the existence of three independent modes and mechanisms of failure, not two, not four, purely three. The Mises criterion has one mode of failure. These three modes of failure are fully examined. It is verified that these modes of failure under plane stress conditions are exactly the same as those operative in the three-dimensional case. The simple plane stress form of the failure theory has major appeal and likely use as a teaching tool to introduce failure and to help de-mystify the vitally important general subject of materials failure.


2021 ◽  
Vol 16 (3) ◽  
pp. 153-160
Author(s):  
Diah Septiyana

In product manufacture, the high failure rate problem of produce product is the number of product defects. Several types of defects have a high enough percentage. To solve this problem, we need to identify the failures and to get the assessment information of the three risk factors. Our research using the traditional FMEA method at the production of Wiring Harness products to shows the current condition of various modes of failure in those areas. This study focuses on implementing fuzzy FMEA to identify the potential risks that may occur along with the assembling of the Wiring Harness process. The fuzzy FMEA approach is preventing product and process problems before they occur, this paper is also expected to result in some mitigation effort that can be applied to improve the Wiring Harness production process. With the Fuzzy FMEA method, we have found the highest FRPN value that shows the highest defect such as damage insulation is 8.5, damage terminal is 8.5, and the damaged part is 8.5 and the highest RPN from the traditional FMEA is damage insulation (324).  To solve this problem, we propose to use the fishbone diagram and give suggestions for improvements to the highest failure modes that are damaged insulation.


Author(s):  
Parekh Abhishek J.

Abstract: In the modern era where emphasis on air travels is increasing day by day. There is no near alternative of jet fuel. In such situation where fossil fuel use becomes bounded than, we should try to increase efficiency from available resources so as to push world towards sustainable development. Efficiency of aeroplanes greatly depends on couple of major factors like load carried, type of fuel used, power of engine installed, etc. But if we take similar aircrafts with similar loads than one criterion plays pivotal role in efficiency of aircrafts and that is shape of aerofoil wings. Angle of attack also depends on this. Optimum shape of aerofoil has always been topic of research for engineers. In present paper, an aerofoil shape with bottom surface backlash is analysed in ABAQUS software. Different modes of failure help in better designing as well as maximum bearable load by aerofoil shape. Keyword: 1. Aeronautical engineering, 2. Fluid Mechanics, 3. Analysis on ABAQUS, 4. Computational fluid dynamics.


2021 ◽  
Vol 104 (9) ◽  
pp. 1447-1451

Objective: To compare the biomechanical properties of the Chinese finger (CF) suture, a needleless suture technique, with the baseball stitch (BS) suture, a needled suture technique, in a multi-strand model by using a 4-strand tendon model. Additionally, the BS was compared with the serial rolling hitch (RH), a locking needleless suture technique. Materials and Methods: 4-strand grafts, made from two 20-cm fresh porcine toe extensors, were used in all three groups. After the grafts were sutured, pretension was applied with a load of 100-N distraction force for five minutes. After the tendon elongation was measured before and after the pretension, the distraction force was continued until the constructed graft failed. Stress-strain relationship graphs were recorded by universal testing machine (UTM), distributing to the calculation of percentage on tendon elongation, stiffness, and load-to-failure. Results: The BS had significantly higher load of failure than the CF (p=0.001) but no significant difference when compared with the RH. Comparing between BS, CF, and RH, there were no significant difference in stiffness and percentage of tendon elongation. In modes of failure, there was evidence of knot slipping in CF in six of six cases and graft strangulation in RH in four of six cases. Conclusion: Multi-strand model BS, a needled suture, had a higher load to failure than CF, a needleless suture. Moreover, needleless sutures had serious modes of failure, which were knot slipping and strangulation of graft by the suture material. Therefore, needleless suture technique for multi-strand tendon graft preparation was not recommended. Keywords: Tendon preparation; Multi-Strand; Needled suture; Needleless suture; Chinese finger; Baseball stitch; Rolling Hitch; Biomechanical study; Graft elongation; Load to failure


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3082
Author(s):  
Khalil Aleisa ◽  
Syed Rashid Habib ◽  
Abdul Sadekh Ansari ◽  
Ragad Altayyar ◽  
Shahad Alharbi ◽  
...  

Optimal bond strength between the prefabricated post/dowel to the surrounding dentin is essential. The present study aimed to analyze and compare the effect of three different cement film thicknesses on the pull-out bond strength of three different prefabricated post systems. Extracted natural teeth (N = 90) with similar root dimensions were acquired. Teeth were mounted in resin blocks, endodontically treated, sectioned at cemento-enamel junction, divided into three groups (A: Parapost Fiber Lux plus; B: 3M ESPE Relyx fiber post; and C: Parapost XP), and stored. Uniform post spaces were prepared for the groups (A and C: Length = 8 mm, Width = 1.5 mm; B: Length = 8 mm, Width = 1.6 mm). Each group (N = 30) was further subdivided into three subgroups (n = 10) based on the size (4, 5, and 6) of the post and cemented with resin cement (MultiLink-N, Ivoclar Vivadent). After thermocycling, the specimens were subjected to a pull-out test using a universal testing machine, and tensile force was recorded (MPa). Digital microscopic evaluations were performed for modes of failure. ANOVA and Tukey-HSD tests were used for statistics. Significant differences were observed for each tested material (p = 0.000). The lowest and highest bond strength values were recorded for Group C (Titanium post) and Group A (000), respectively. Multiple comparisons showed significance (p < 0.05) among all the groups, except for space 1 and space 2 (p = 0.316) for Group A. Most of the failures occurred within the cement-dentin and post-cement interface (Adhesive failures, 73.5%). An increase in the luting cement film thickness results in the decrease in pull-out bond strength of prefabricated posts luted with resin cement, irrespective of the type/material/shape of the post. The serrated fiber posts showed the highest pull-out bond strength compared to the smooth surfaced fiber posts or serrated metal posts. Increased pull-out bond strengths were observed when appropriate post space was created with the same sized drill as the post size.


Sign in / Sign up

Export Citation Format

Share Document