Anti-Microbial and Self-Cleaning of Natural Rubber Latex Gloves by Adding Mangosteen Peel Powder

2018 ◽  
Vol 777 ◽  
pp. 3-7 ◽  
Author(s):  
Wasan Moopayuk ◽  
Nuchnapa Tangboriboon

Mangosteen peel powder is one of the most important bio-antioxidants. Adding mangosteen peel powder as filler into natural rubber latex compound for latex glove film formation via dipping process can help the green anti-microbial properties. The physical (smoothness and thickness of film) and mechanical properties (tensile strength and elongation at break) of latex film are still good. Therefore, adding mangosteen peel powder into natural rubber latex gloves can reduce the anti-allergic and antimicrobial on the film surface. Mangosteen peel powder ground by rapid mill is fine particle and high surface area 2.4216 m2/g suitable for homogeneous and compatible for adding into natural rubber latex compound. Ceramic hand mold was dipped into the Ca (NO3)2 coagulant only 3 seconds, then dipped into the natural rubber latex compounds added mangosteen peel powder for 15 seconds, withdrawn hand mold slowly, cured in the oven at 120°C for 30 min, then dried at room temperature, and casted it off the hand mold. The obtained natural latex glove films added mangosteen peel powder are smooth, clear, and thin film surface, the highest elongation at break 803.2711 ± 31.6477%, good tensile strength 30.2933 ± 6.0218 MPa, dense film without water leakage, and good contact angle.

2019 ◽  
Vol 92 (3) ◽  
pp. 558-577
Author(s):  
Nuchnapa Tangboriboon ◽  
Rujika Takkire ◽  
Watchara Sangwan ◽  
Sairung Changkhamchom ◽  
Anuvat Sirivat

ABSTRACT Raw hen eggshell powder, a calcium carbonate source, was used as a biofiller in the natural rubber latex compound and latex glove film formation via dipping process. The powder was anticipated to improve the physical (smoothness and thickness of film) and mechanical properties (tensile strength and elongation at break) of latex film and to reduce the extractable protein content on film surface. Eggshell powder ground by a rapid mill was fine particles of approximately 37.48 μm in diameter, suitable for homogeneous and compatible addition into the natural rubber latex compound. Dipping hand mold into the natural rubber latex compound with 50 wt% eggshell added was the best formula to obtain a smooth, clear, thin film surface, with the tensile strength of 23.24 ± 0.745 MPa and the highest elongation at break of 723.99 ± 14.60%, along with a low protein content, a dense film without water leakage, and with a good contact angle. The natural rubber latex glove film possessed good physical-mechanical properties and a low protein content as the results of the raw eggshell powder added as a biofiller.


2018 ◽  
Vol 382 ◽  
pp. 21-25 ◽  
Author(s):  
Puwitoo Sornsanee ◽  
Vichasharn Jitprarop ◽  
Nuchnapa Tangboriboon

Both synthetic and natural rubber latex can be used to form rubber latex glove films for medical and dental applications. The objective in this research is to study the natural and synthetic rubber latex glove films formation by dipping process with the bone china ceramic hand molds for 5, 10, and 15 min. From the experimental, the obtained natural rubber latex glove films are good appearance and good physical-mechanical properties i.e. smooth film surface, light pale yellow color, soft, translucent, high tensile strength, high elongation at break, and high flexibility better than those of synthetic rubber latex glove films. When the dipping time of bone china hand mold into natural rubber latex compound increases effect to tensile strength, thickness, and elongation at break increase. Tensile strength, elongation at break, and tensile stress of natural rubber latex films dipped for 15 min are equal to 12.82 ± 1.19 MPa, 1090.91 ± 4.92%, and 39.23 ± 3.63 N, respectively.


2014 ◽  
Vol 997 ◽  
pp. 239-242
Author(s):  
Guang Lu ◽  
He Ping Yu ◽  
Yong Zhou Wang ◽  
Yong Yue Luo ◽  
Zong Qiang Zeng

After a maturation of three days at ambient temperature, the sulfur-prevulcanized natural rubber latex (SNRL) was stabilized by 20wt% Peregal O, and then acidified with the 36wt% acetic acid by a ratio of 5, 15, 25, 35 and 45 g of 36wt% acetic acid to 100g SNRL, to obtain acidified prevulcanized NR latex (ASNRL) with different acidity, respectively. The viscosity of ASNRL increased, while the nitrogen content decreased, with the increment of acetic acid content and the decrease in pH; for unaged samples, the tensile strength, elongation at break, 300% and 500% moduli of the ASNRL films were only slightly lower than those of SNRL film; however the hot-air aging resistance decreased with the increment of acetic acid content.


2011 ◽  
Vol 84 (4) ◽  
pp. 543-564 ◽  
Author(s):  
Nuchnapa Tangboriboon ◽  
Prapapan Phudkrachang ◽  
Ruksapong Kunanuruksapong ◽  
Anuvat Sirivat

Abstract Controlling the level of the extractable protein contents in a natural rubber latex is important to the sensitization of natural rubber latex products users. Allergies caused by latex products cause a serious problem in which the sweat removes proteins and allowing a skin contact causing allergic reactions. Calcium oxide from calcined chicken eggshells at 900 °C for 1 h was dissolved in 2M HCl (CaCl2) and used as the thickening agent in which it can modify the protein structure. The eggshells were characterized by the particle size analysis, the impedance analysis, simultaneous thermal analysis (STA), x-ray diffraction (XRD), and Fourier transform infrared spectra (FTIR). Calcium chloride (CaCl2) interacts with the protein molecules and the solvent ions through the hydrogen bonding and the electrostatic interactions driving the extractable protein toward the film surface. Sodium dodecyl sulphate was used as the stabilizer in the natural rubber latex film formation. The extractable protein contents were measured and determined by the modified Lowry method. The concentrated latex samples were further characterized by FTIR, scanning electron microscope, and XRD and the results were reported here. Moreover, near infrared was used to measure the extractable protein spectra of the concentrated latex compounds in the region of 1100–2500 nm.


2015 ◽  
Vol 1123 ◽  
pp. 387-390 ◽  
Author(s):  
Hamidah Harahap ◽  
Adrian Hartanto ◽  
Kelvin Hadinatan ◽  
Indra Surya ◽  
Baharin Azahari

The effect of aging on mechanical properties of natural rubber latex (NRL) products filled with alkanolamide-modified cassava peel waste powder (CPWP) was studied. CPWP used as fillers was prepared by milling and sieving it until the size of 100 mesh. The powder then was dispersed in a suspension containing water and alkanolamide in order to modify the prepared powders. The dispersion system of 10 pphr (part per hundred rubber) then was added into NRL matrix followed by pre-vulcanization at 70°C for 10 minutes. The NRL compound then were casted into films by coagulant dipping method then dried at 120°C for 10 minutes. Afterwards, the films were allowed to cool at room temperature for 24 hours before being aged in a circulation of hot air for 24 hours at 70°C. The properties such as tensile strength, tensile modulus, and elongation at break were evaluated between the aged samples and the unaged samples. From this study, it showed that the aged films have increasing value of tensile strength and tensile modulus while the value of elongation at break decreases. These datas are supported by Scanning Electron Microscope (SEM) micrographs which indicate that the change of morphology in NRL films occurs before and after aging.


2012 ◽  
Vol 626 ◽  
pp. 523-529 ◽  
Author(s):  
Shamala Ramasamy ◽  
Hanafi Ismail ◽  
Yamuna Munusamy

Rice husk powder (RHP) is an abundant agricultural by product that is produced in bulk quantity as part of rice milling. This research is carried out to incorporate RHP with natural rubber latex (NRL) compound. Different loading of RHP is added to NRL compound and is foamed to make natural rubber latex foam (NRLF) using a well known technique called the Dunlop method. The tensile properties of modified NRLF is studied and compared with the controlled NRLF which has zero RHP loading. The morphology and micro structural characterization has been performed by Tabletop microscopy (TM1000). The tensile strength decreases at 2.5 pphr but increases again as the filler loading increases. Elongation at break decreases whereas modulus at 100% elongation (M 100) and hardness increases as the filler loading increases.


2015 ◽  
Vol 1119 ◽  
pp. 342-346
Author(s):  
Hamidah Harahap ◽  
Kelvin Hadinatan ◽  
Adrian Hartanto ◽  
Elmer Surya ◽  
Indra Surya ◽  
...  

Cassava peel is one of agricultural waste that abundantly found in environment. One approach to manage this waste is to apply it as filler in natural rubber latex. In this work, the cassava peel waste (CPW) was powdered and dispersed in alkanolamide-water dispersion system to modify its surface. The amount of fillers used was 0, 5, 10, 15, 20 and 25 phr (part per hundred rubber) and loaded in natural rubber latex (NRL) formulation system. The products then were formed by dipping method after the NRL formulation was pre-vulcanized at 70°C. The observed parameter includes crosslink density, tensile strength, tensile modulus and elongation at break. Scanning Electron Microscope (SEM) was used to study the morphology of tensile fracture in NRL film. The results show that 10 phr loading of modified fillers increases the crosslink density, tensile strength, and tensile modulus but decreases the elongation at break. SEM study also reveals that higher filler loading above 10 phr will create the agglomeration in rubber matrix.


2010 ◽  
Vol 78 (2) ◽  
pp. 328-333 ◽  
Author(s):  
Waranya Anancharungsuk ◽  
Duangporn Polpanich ◽  
Kulachart Jangpatarapongsa ◽  
Pramuan Tangboriboonrat

2016 ◽  
Vol 5 (2) ◽  
pp. 27-31
Author(s):  
Marfuah Lubis ◽  
Nuim Hayat ◽  
Hamidah Harahap

Nanocrystalline cellulose is nano sized filler with high crystallinity and obtanained by hydrolysis of alpha cellulose from sugarcane bagasse. Tensile test of natural rubber latex film filled nanocrystalline cellulose and alkanolamide as compatibilizer after aging treatment have been done. Natural rubber latex films were prepared by coagulant dipping method and followed by vulcanization process at temperature 100 oC and 20 minutes. Aging treatment of natural rubber latex films have done at temperature 70 oC for 24 hours. Tensile test result of natural rubber latex filled nanocrystalline cellulose showed the tensile strength value of aged natural rubber latex film were lower than unaged one. However, tensile strength value of aged natural rubber latex film filled nanocrystalline cellulose modified alkanolamide were higher than unaged film.


Sign in / Sign up

Export Citation Format

Share Document