filler loading
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 184)

H-INDEX

31
(FIVE YEARS 7)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Mattia Bartoli ◽  
Daniele Torsello ◽  
Erik Piatti ◽  
Mauro Giorcelli ◽  
Amelia Carolina Sparavigna ◽  
...  

The development of responsive composite materials is among the most interesting challenges in contemporary material science and technology. Nevertheless, the use of highly expensive nanostructured fillers has slowed down the spread of these smart materials in several key productive sectors. Here, we propose a new piezoresistive PVA composite containing a cheap, conductive, waste-derived, cotton biochar. We evaluated the electromagnetic properties of the composites under both AC and DC regimes and as a function of applied pressure, showing promisingly high conductivity values by using over 20 wt.% filler loading. We also measured the conductivity of the waste cotton biochar from 20 K up to 350 K observing, for the first time, hopping charge transport in biochar materials.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 251
Author(s):  
C. N. Aiza Jaafar ◽  
I. Zainol ◽  
M. I. Izyan Khairani ◽  
T. T. Dele-Afolabi

The effects of filler loading and silane coupling agent on the properties of hydroxyapatite (HAp)-filled high density polyethylene (HDPE) composites have been studied. The (HAp) powder was successfully produced from tilapia scales using the spray drying process utilized to prepare the HDPE/HAp composites. The FTIR peaks for the untreated HDPE/30HAp composite corresponded to the functional groups of HDPE (C-CH3) and –CH2 and HAp (PO4−3 and O-H). The FTIR spectrum for the silane-treated composite showed that the C=O and silanol groups were eliminated, which strongly confirms the chemical interaction between the HAp fillers and the HDPE matrix. The developed composites demonstrated enhanced mechanical performance, and in particular the treated HDPE/30HAp-S composite exhibited superior tensile strength, Young’s modulus and flexural modulus of 28.26 MPa, 1272 MPa and 796 MPa, respectively. In vitro cytotoxicity analysis showed that the developed composites were non-toxic and have great potential to be used for biomedical application.


2022 ◽  
Vol 58 (4) ◽  
pp. 171-178
Author(s):  
Elangovan Kasi ◽  
Mohan Ramakrishnan

The usage of seals in several applications like aircraft engines is mostly made of Fluorocarbon (FKM) elastomer. They are coloured products that enable easier identification based on the applications. In such seals, fillers like carbon black cannot be added to reinforce and improvise the mechanical properties since carbon black does not make it possible to add colours. The properties after ageing are also very critical in sealing application, and they must also be improved. Also, Nanocomposites are the modern and growing trends in the field of polymers that show enormous changes in the properties of the polymers without affecting their basic properties. So, the need for improvisation of FKM seals and the concept of Nanocomposites can be merged to form FKM Nanocomposites with Nano clay and Nano silica as the fillers. The objective of this project is to improve the mechanical properties, better retention of properties after ageing and after fluid interaction of the FKM seals with the aid of Nanofillers. Different proportions of FKM nanocomposites were prepared using modified Nano Kaolin Clay & modified Montmorillonite clay (Cloisite grades). Various mechanical properties like tensile strength, tensile modulus, elongation at break, compression set and tear strength etc., were studied. The test results have shown good improvements while increasing the filler loading. This is helpful to manufacture seals of desired colours thereby avoiding the difficulties faced in the carbon black-filled FKM compounds.


Author(s):  
Hui Liu ◽  
Li Li Ma ◽  
Yi Chao Yan ◽  
Qing Quan Lei ◽  
Meng Xin

Abstract The addition of graphene can change the distribution of conductive pathways in the polymer composites and further affect the dielectric properties. In this work, a facile and environmentally friendly method was proposed to enhance dielectric properties by manipulating the reduction extent of reduced graphene oxide (RGO) in polyvinylidene fluoride (PVDF) matrix just through altering the thermal reduction treatment time. Measurement results showed that the electrical percolation occurred as thermal reduction treatment time increased and the conduction mechanism changed into approximate free electron model. RGO/PVDF composites with tailorable dielectric properties were realized with a low filler loading level.


2022 ◽  
pp. 101060
Author(s):  
Shengjun Pan ◽  
Bin Wu ◽  
Gang Qian ◽  
Jun Zhang ◽  
Zhengzhi Zheng ◽  
...  

Effects of chemical treatments with benzoyl chloride, acetone and alkali on the physical and mechanical properties of Orange Peel Particulate (OPP) reinforced epoxy composite materials have been studied. Hand lay-up technique was applied to manufacture the composites. The experimental results illustrate that chemical treatment with benzoyl chloride has a considerable impact. The properties of OPP reinforced composite material have been enhanced by 15% (for tensile test) and 30% (in case of flexural test) due to benzoyl chloride treatment as compared to raw OPP composites. It is evident from Fourier Transform Infrared Spectroscopy (FTIR) that non cellulosic content was removed from the surface of the fiber due to benzoyl chloride treatment. After chemical treatment there was good interfacial bonding between matrix and filler material as observed in SEM micrographs. From the experimental observations, it can be seen that among all fabricated composites, set of composites with 30% filler loading yields excellent mechanical properties.


2022 ◽  
Vol 951 (1) ◽  
pp. 012045
Author(s):  
A M Zakaria ◽  
M A Jamaludin ◽  
M N Zakaria ◽  
R Hassan ◽  
S A Bahari

Abstract This article presents the application of plantation waste materials (leaves, branches and trunks) of Azadirachta excelsa (Sentang) tree in order to evaluate and compare their suitability as reinforcement and filler for high density polyethylene (HDPE) thermoplastics. The aim of the study was to investigate the effect of different types of Azadirachta excelsa (Sentang) trunks flour, branches flour and leaves flour fillers on the mechanical and physical properties of HDPE composite. The composite samples were produced using 25%, 35% and 45% by weight of flour filler loading and 2% coupling agent (maleic anhydride) using a twin-screw extruder, followed by injection molding process. The flexural modulus and tensile strength of the composite filled with trunk flour were not significantly different with the composite-filled branch flour. However, there is a significant difference between composite-filled leaf flour when compared to both composite-filled trunk flour and composite-filled branch flours. Overall, composite samples with trunk flour show better mechanical properties, while composite samples with lower filler loadings of 25% exhibit better dimensional stability compared to the other such as 35% and 45% filler loadings. The study also indicated that composite filled with leaf, branch and trunk flours had better mechanical strength than virgin HDPE.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 982
Author(s):  
Matilde De Pascale ◽  
Francesco Maria Benedetti ◽  
Elsa Lasseuguette ◽  
Maria-Chiara Ferrari ◽  
Kseniya Papchenko ◽  
...  

Torlon® is a thermally and plasticization-resistant polyamide imide characterized by low gas permeability at room temperature. In this work, we aimed at improving the polymer performance in the thermally-enhanced He/CO2 and H2/CO2 separations, by compounding Torlon® with a highly permeable filler, ZIF-8, to fabricate Mixed Matrix Membranes (MMMs). The effect of filler loading, gas size, and temperature on the MMMs permeability, diffusivity, and selectivity was investigated. The He permeability increased by a factor of 3, while the He/CO2 selectivity decreased by a factor of 2, when adding 25 wt % of ZIF-8 at 65 °C to Torlon®; similar trends were observed for the case of H2. The MMMs permeability and size-selectivity were both enhanced by temperature. The behavior of MMMs is intermediate between the pure polymer and pure filler ones, and can be described with models for composites, indicating that such materials have a good polymer/filler adhesion and their performance could be tailored by acting on the formulation. The behavior observed is in line with previous investigations on MMMs based on glassy polymers and ZIF-8, in similar conditions, and indicates that ZIF-8 can be used as a polymer additive when the permeability is a controlling aspect, with a proper choice of loading and operative temperature.


2021 ◽  
Author(s):  
Nagaprasad Nagaraj ◽  
VigneshVenkataraman Venkataraman ◽  
Karthik Babu NB ◽  
Stalin Balasubramaniam ◽  
Leta Tesfaye Jule ◽  
...  

Abstract The need of eco-friendly materials has been attracted due to renewability, abundance availability, low cost, and so on. Therefore, the search for bio fillers for the production of bio-based composite materials is gaining more and more attention in both academic and industry circles because it promotes sustainability. The present study represents the utilization of biomass solid waste in the hybrid form of tamarind seed and date seed powder into polymer reinforced composite which has been explored for the first time by a compression molding technique. These fillers are bio-waste that can be obtained at a minimal cost from renewable sources. An attempt has been made to use these hybrid fillers to reinforce with the matrix ranging from 0 to 50 wt.%, and their physical, mechanical, and thermal properties were investigated. In general, the inclusion of hybrid fillers increases mechanical properties, although the addition of hybrid fillers had only a minor impact on thermal properties. When compared to the pure vinyl ester resin, the hybrid fillers reinforced composites revealed a significant improvement in tensile, flexural, impact, and hardness properties, with improvements of 1.51 times, 1.44 times, 1.87 times, and 1.46 times respectively, at 10 wt.% filler loading. Filler matrix interaction of fractured mechanical testing samples was analyzed by scanning electron microscope. Based on the findings, hybrid filler reinforced composites may be suitable for applications where cost is a consideration and where minor compromises in thermal qualities are acceptable.


Sign in / Sign up

Export Citation Format

Share Document