Apatite Formation on Zirconia (Y-TZP) Coated with Carbonate Apatite in Simulated Body Fluid

2019 ◽  
Vol 829 ◽  
pp. 145-150
Author(s):  
Astrie Yumeisa ◽  
Lisda Damayanti ◽  
Taufik Sumarsongko ◽  
Andrie Harmaji ◽  
Arief Cahyanto

Abstract. Various bioactive calcium phosphates such as hydroxyapatite (HA) and carbonate apatite (CO3Ap) have been widely studied due to their biocompatibility and osteoconductivity when implanted into bone defects. CO3Ap has the ability to adapt bone structure and induce bone regeneration; so that it can be categorized as resorbable bioactive materials. CO3Ap induced much stronger response such as cell adhesion and actin ring formation to osteoclast-like cells rather than HA. The aim of this study is to evaluate the bioactivity on zirconia (Y-TZP) coated with CO3Ap using simulated body fluid (SBF). Twenty Y-TZP ZrO2 disks with a 12-mm diameter and 1-mm thickness were employed as the samples. The disks were divided into two groups which the control group without CO3Ap coating and tested group with CO3Ap coating. Disks samples are dipped into CO3Ap suspension for one minute and stored in 37°C incubator for 24 hours. The disks were soaked in SBF for 1, 4, and 7 day(s) at 36.5°C. The obtained apatite crystals were characterized by scanning electron microscopy (SEM). It was found that the apatite formation on the tested group was greater than the control group. The EDS pattern showed the presence of Ca and P on the control and tested group after SBF soaking, which indicate the apatite deposition on the disks’ surface. However, the Ca and P on the tested group was higher compared to the control group. The formation of apatite layer on the disks’ surface is bioactivity indicator of CO3Ap.

2016 ◽  
Vol 720 ◽  
pp. 147-152 ◽  
Author(s):  
Myrna Nurlatifah Zakaria ◽  
Arief Cahyanto ◽  
Ahmed El-Ghannam

Silica-calcium phosphate composite (SCPC) and carbonate apatite (CO3Ap) are resorbable bioactive materials with the ability to adapt to bone structure and to induce bone regeneration. Considering the similarity between bone and dental structure, where both are mainly composed of calcium deficient carbonate containing hydroxyapatite, we hypothesize that a SCPC-CO3Ap bone cement might also be favorable for the regeneration of dentin and pulp tissue. Therefore, in the present study we report on the effect of composition and structure of SCPC-CO3Ap cement on the morphology, setting and mechanical properties of the material. The novel bioceramics cement composed of vaterite, dicalcium phosphate anhydrous (DCPA) and SCPC. The powder cement ratio divided into 5 groups: group 1 (60% DCPA : 40% vaterite : 0% SCPC) as a control, group 2 (60% DCPA : 10% vaterite : 30% SCPC), group 3 (60% DCPA : 20% vaterite : 20% SCPC), group 4 (60% DCPA : 30% vaterite : 10% SCPC), and group 5 (60% DCPA : 0% vaterite : 40% SCPC). Each group was mixed by 1M Na2HPO4 aqueous solution at liquid to powder ratio of 0.5 and hardened at 37°C and 100 % of relative humidity for 72 hours. Set cement was examined by X-Ray diffraction (XRD), scanning electron microscopy (SEM) and the mechanical strength was evaluated by diametral tensile strength. XRD patterns revealed that the apatite formation was formed after 72 hours, however the intensity of apatite varied based on the SCPC content. The DTS evaluation indicated that group 3 has the highest mechanical strength compared to others. This was supported by SEM analysis of set cement showing more compact surface microstructure of group 2 and 3 compared to other different ratio and control group. The novel bioceramics cement was successfully made using vaterite, DCPA and SCPC. This new cement is currently being investigated for dental application to induce dentinogenesis.


2006 ◽  
Vol 309-311 ◽  
pp. 411-414 ◽  
Author(s):  
Bang Cheng Yang ◽  
Qi Feng Yu ◽  
Ji Yong Chen ◽  
Xing Dong Zhang

The bioactivity of a composite of titania and hydroxyapatite was studied in vitro in this paper. After the titania ceramics was added 10% HA, it could induce apatite formation in simulated body fluid in 2d, while the pure titania ceramics could not induced apatite formation even after 14d. After the composite of titania and HA was subjected to alkali-heat treatment, it has a faster speed for apatite formation in SBF than the composite without treatment. When the osteoblast was cultured on the materials, the amount of osteoblasts attaching on the composite was more than that on the pure titania ceramics. It has the most osteoblasts cells on the composite subjected to alkali-heat treatment. These results showed that the composite of titania and HA is a bioactive materials, while the alkali-heat treatment could improved the bioactivity of this composite.


2009 ◽  
Vol 4 (4) ◽  
pp. 045005 ◽  
Author(s):  
Qing Lin ◽  
Yanbao Li ◽  
Xianghui Lan ◽  
Chunhua Lu ◽  
Yixin Chen ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Farzad Soleymani ◽  
Rahmatollah Emadi ◽  
Sorour Sadeghzade ◽  
Fariborz Tavangarian

Polymer–ceramic composite coatings on magnesium-based alloys have attracted lots of attention in recent years, to control the speed of degradability and to enhance bioactivity and biocompatibility. In this study, to decrease the corrosion rate in a simulated body fluid (SBF) solution for long periods, to control degradability, and to enhance bioactivity, polycaprolactone–chitosan composite coatings with different percentages of baghdadite (0 wt.%, 3 wt.%, and 5 wt.%) were applied to an anodized AZ91 alloy. According to the results of the immersion test of the composite coating containing 3 wt.% baghdadite in a phosphate buffer solution (PBS), the corrosion rate decreased from 0.45 (for the AZ91 sample) to 0.11 mg/cm2·h after seven days of immersion. To evaluate the apatite formation capability of specimens, samples were immersed in an SBF solution. The results showed that the samples were bioactive as apatite layers formed on the surface of specimens. The composite coating containing 3 wt.% baghdadite showed the highest apatite-formation capability, with a controlled release of ions, and the lowest corrosion rate in the SBF.


2014 ◽  
Vol 922 ◽  
pp. 657-662 ◽  
Author(s):  
Sharidah Azuar Abdul Azis ◽  
John Kennedy ◽  
Peng Cao

In this study, hydroxyapatite (HA) coatings on Ti6Al4V substrate were deposited using an ion beam sputtering technique. Owing to its medical applications, the crystalline phases present in the HA must be controlled. This study investigated the effect of post-deposition heat treatment at different temperatures and evaluated the microstructure of the HA coatings and their behaviours in simulated body fluid (SBF). The post-deposition treatment of the as-deposited samples was carried out in an air-circulated furnace at a temperature between 3000C and 6000C. The XRD patterns reveal that the minimum temperature to transform the HA coating from amorphous to crystalline phase is 4000C. A higher temperature at 6000C leads to a growth of the crystalline HA phases. Fourier transform infrared spectroscopy (FTIR) measurements show the existence of hydroxyl and PO-bonds in all coatings and the amounts varied with temperature. Atomic Force Microscopy (AFM) study suggests that the nanostructured crystalline HA starts to grow at 4000C and becomes more obvious at a higher temperature of 6000C. The simulated body fluid (SBF) test reveals that better apatite formation with post deposition heat treatment at 6000C would potentially enhance the formation of new bone (osseointegration).


Sign in / Sign up

Export Citation Format

Share Document