Effects of Rubber and Mould Temperatures on the Solid Tire Curing Process

2020 ◽  
Vol 856 ◽  
pp. 323-330
Author(s):  
Sitthichai Limrungruengrat ◽  
Arisara Chaikittiratana ◽  
Tonkid Chantrasmi ◽  
Sacharuck Pornpeerakeat ◽  
Utid Suripa

Vulcanization or curing process is a very important process in producing useful rubber products. The quality, performance as well as manufacturing cost of a rubber product are largely affected by the curing process. The curing process takes place when heat is transferred to the rubber compounds inside a heated mould. Curing of a thick article, such as a solid tire, often occurs under transient non-isothermal conditions. The temperature distribution in the rubber significantly affects the cure level distribution throughout the part, especially in a large rubber component. Therefore the ability to predict the distribution of cure level in a rubber part during curing is of great importance for improving the process efficiency and the quality of the final product. In this work, simulations of the curing process of a solid tire, consisting of three layers of different rubber compounds, were performed and the cure level distribution results were evaluated. The simulations are carried out using the commercial finite element software ABAQUS with the cure kinetics model for rubber implemented through the user subroutine UMATHT. The effects of the mold temperature and initial temperature of the solid tire on the cure level distribution and cure time were investigated.

2007 ◽  
Vol 80 (4) ◽  
pp. 545-564 ◽  
Author(s):  
W. B. Wennekes ◽  
J. W. M. Noordermeer ◽  
R. N. Datta

Abstract The adhesion between virgin textile cords and rubber is always weak, because of significant differences between fiber and rubber in modulus, elongation, polarity as well as reactivity. In order to improve the adhesion, it is customary to use adhesive systems, which act as bridges between elastomer and reinforcement. These are commonly based on Resorcinol/Formaldehyde/Latex (RFL) dips. For polyester and aramid fibers, two dip systems are applied. The first one is an epoxy pre-dip and the second dip is a RFL dip again. Although several mechanisms are proposed to explain the role of RFL, the majority of these explanations are based on assumptions rather than proper scientific investigations. In this paper an attempt is made to understand the role of the rubber vulcanization system on RFL-to-rubber bonding as judged by measuring the H-pullout force, Strap Peel Adhesion Force (SPAF) and the mechanical properties of the compounds. A positive correlation is found between the optimum cure time (t90) of the rubber compounds and the pullout and peel force. In literature this is commonly explained by the lack of curative migration from the rubber into the dip when t90 is low. In the present paper curative migration is monitored by scanning electron microscopy coupled to an energy dispersive X-ray spectrometer (SEM-EDX). A strong enrichment of curatives in the RFL dip near the interface is observed. A high accelerator loading results in a low t90 of the rubber compound as well as a more pronounced enrichment of curatives in the dip near the interface. Therefore the drop in adhesion does not occur because of lack of curative migration from rubber to the RFL layer, but more likely due to overcure of the latex in the dip, causing a brittle layer resulting in low pullout and peel strengths.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3853
Author(s):  
Bilen Emek Abali ◽  
Michele Zecchini ◽  
Gilda Daissè ◽  
Ivana Czabany ◽  
Wolfgang Gindl-Altmutter ◽  
...  

Thermosetting polymers are used in building materials, for example adhesives in fastening systems. They harden in environmental conditions with a daily temperature depending on the season and location. This curing process takes hours or even days effected by the relatively low ambient temperature necessary for a fast and complete curing. As material properties depend on the degree of cure, its accurate estimation is of paramount interest and the main objective in this work. Thus, we develop an approach for modeling the curing process for epoxy based thermosetting polymers. Specifically, we perform experiments and demonstrate an inverse analysis for determining parameters in the curing model. By using calorimetry measurements and implementing an inverse analysis algorithm by using open-source packages, we obtain 10 material parameters describing the curing process. We present the methodology for two commercial, epoxy based products, where a statistical analysis provides independence of material parameters leading to the conclusion that the material equation is adequately describing the material response.


2009 ◽  
Vol 25 (2) ◽  
pp. 113-128 ◽  
Author(s):  
P. Raju ◽  
V. Nandanan ◽  
Sunil K.N. Kutty

Mechanical properties and the thermal degradation characteristics of natural rubber compounds with calophyllum inophyllum oil were compared to that of the control compound containing naphthenic oil. The compounds containing calophyllum inophyllum oil showed improved tensile strength, tear strength, modulus, compression set, abrasion resistance and resilience. Cure time was higher than the naphthenic oil mixes. Thermal studies showed an increase of 8 °C in the temperature of initiation of degradation and an increase of 6 °C in temperature at which the peak rate of degradation occurred. The peak rate of degradation was comparable to the control mix containing naphthenic oil.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


Author(s):  
Liangfeng Sun ◽  
Arthur M. Sterling ◽  
Su-Seng Pang ◽  
Ioan I. Negulescu ◽  
Michael A. Stubblefield

Abstract The curing process of epoxy prepreg was studied by means of Differential Scanning Calorimeter. The dynamic, isothermal, and combinations of dynamic and isothermal measurements were done over selected temperature ranges and isothermal cure temperatures. The heats of reaction for dynamic and isothermal cure were determined. The results show that the heat of isothermal-cure reaction increased with the increment of temperature. The degree of cure was calculated from the heat of isothermal-cure reaction. The complete cure reaction could be achieved at 220 °C within the very short cure time. The changes of cure rate with time were given for the studied isothermal cure temperatures. To simulate the relationship between the cure rate and degree of cure, the autocatalytic model was used and the four parameters were calculated. Except in the late stage of cure reaction, the model agrees well with the experimental data, especially at high temperatures. To account for the effect of diffusion on the cure rate, a diffusion factor was introduced into the model. The modified model greatly improved the predicated data at the late stage of cure reaction.


2012 ◽  
Vol 35 ◽  
pp. 833-838 ◽  
Author(s):  
Bağdagül Karaağaç ◽  
Melih İnal ◽  
Veli Deniz
Keyword(s):  

2009 ◽  
Vol 79-82 ◽  
pp. 2171-2174 ◽  
Author(s):  
Chanchai Thongpin ◽  
C. Sangnil ◽  
P. Suerkong ◽  
A. Pongpilaiprertti ◽  
Narongrit Sombatsompop

This research is concentrated on the effect of concentration of silane-69 used for surface modification on precipitated silica (PSi), on cure characteristic and mechanical properties of PSi filled NR. The PSi content in this study was fixed at 20 phr in order to reveal the effect of silane used to modify PSi, on NR compound and vulcanizate. Moving Die Rheometer (MDR) was used to characterize cure characteristic of rubber compounds. Generally, scorch and cure time of NR would increase with the addition of PSi due to the absorption of accelerator on its surface whereas the addition of Si-69 modified PSi would reduce both scorch and cure time. It was found in this research that the excess amount of Si-69 used increased scorch and cure time of rubber compounds. This was thought to be that the excess of Si-69 led to the formation of polysiloxane clusters which could absorb accelerator in rubber compound and resulted in a prolonged scorch and cure time. In term of vulcanized rubber, it was found that maximum torque increased with the concentration of Si-69 up to 6 %. The polysiloxane formed during the cure characterization test was responsible for the slightly decreased torque after 6% of Si-69 treatment. Nonetheless, even with high concentration of Si-69 used, torque was still higher than that of untreated PSi filled NR. This is widely understood that sulfur atoms in Si-69 molecule are able to participate in the bonding between rubber and silane molecules resulted in the enhancement of crosslink density of the vulcanizate rubber. The increased of modulus at 200 % elongation, tensile strength under tension, with the silane concentration, was evidence of the crosslink enhancement. Tear strength and hardness of the vulcanizates exhibiting the increment, with the silane used, also clearly confirmed the bonding between Si-69 and rubber molecules. It was elucidated from the research that excess of Si-69 would lead to polysiloxane formation, cluster form of silane and crosslinking density. Scanning Electron Microscope (SEM) micrographs and swelling test are also presented to confirm the phenomena.


2012 ◽  
Vol 85 (4) ◽  
pp. 495-512 ◽  
Author(s):  
Marina Fernando ◽  
Wong Hon Fei ◽  
Colin Hull

ABSTRACT Curing rubber is a complex process that involves the insertion of cross-links to convert the rubber into a useful functional material. The estimation of the cure time needed for product manufacture of small or thin walled products is often arrived at by means of a rheometer trace. Although this has been recognized as adequate for thin walled products, the production of large rubber articles requires a more rigorous analysis of cure kinetics for an essentially non-isothermal process. Often finite element analysis is used to generate non-isothermal temperature histories in a thick component, and then an appropriate cure kinetic equation is solved to predict the state of cure. In addition to generating the capability for cure time prediction, there is a need in the industry to minimize cycle time, improving productivity and therefore costs involved in product manufacture. For large products, the viability of the use of extrusion molding, where the rubber is extruded into a heated mold at the same temperature as the mold, has been demonstrated in previous reported work in this laboratory. The present work explores, via simulation, the feasibility of using extrusion molding as a manufacturing method for large components. The cure simulation module of Autodesk Moldflow has been used to compare the state of cure of a laminated bearing manufactured by conventional compression molding and extrusion molding. Previous experimental data on the temperature histories of a large laminated bearing manufactured using compression molding are compared with simulation data. Simulation data are then presented on manufacturing the bearing using extrusion molding. The aim is to demonstrate the usefulness of extrusion molding for very large components and to illustrate the advantages of using simulation codes to assist in shortening the cycle time in product manufacture.


2009 ◽  
Vol 79-82 ◽  
pp. 2183-2186 ◽  
Author(s):  
Chanchai Thongpin ◽  
C. Sripetdee ◽  
N. Papaka ◽  
N. Pongsathornviwa ◽  
Narongrit Sombatsompop

Silica has been widely used as non-black reinforcing filler, however, the filler-filler interaction has been an important issue. Cure characteristic and mechanical properties of the rubber compound and rubber vulcanizate were affected both by filler-rubber interaction and filler-filler interaction. There have been, presently, a number of natural fillers which are also used as fillers for the rubber, i.e. fly ash, sawdust and zeolite. This work therefore will study the effect of second filler added into the 13% Si-69 treated precipitate silica (PSi) filled natural rubber compounds. It was revealed that the scorch and cure time of the rubber compound increased with the content of treated PSi. This was the effect of excess of the silane treated onto PSi which would agglomerate and form the cluster of polysiloxane and would then be able to absorb vulcanizing accelerator resulting in extending the scorch and cure time of the rubber compounds. However, this effect was over ruled with the reinforcing effect as could be seen by the increasing, with the contents of PSi, of maximum torque and mechanical properties of the vulcanizates. The NR compounded with treated PSi content of 20 phr selected to study the effect of excess silane on the cure characteristic of hybrid fillers NR composite. The addition of sawdust led to longer scorch time and cure time but not much change of the maximum torque. As expected, the modulus of the rubber vulcanizate increased with the sawdust content whereas the tensile strength and elongation at break decreased with the sawdust content. The incorporation of zeolite could accelerate the cure reaction therefore both scorch time and cure time decreased. The maximum torque also increased with the content of zeolite. Both modulus and tensile strength increased with the content of the zeolite whereas elongation at break tended to be unchanged. In the case of using fly ash as the second filler, the cure time tended to be unchanged. However, the maximum torque tended to be increased with the content of fly ash. It was found that the modulus, tensile strength increased but elongation at break decreased. Interestingly, the excess of Si-69 used effect pronouncedly for the addition of zeolite and fly ash cases as the excess silane could promote the interaction between fillers surface and rubber molecule accept for sawdust


1971 ◽  
Vol 44 (4) ◽  
pp. 1025-1042 ◽  
Author(s):  
R. T. Morrissey

Abstract The ethylene propylene diene rubbers (EPDM) have been modified by halogenation. The reaction has been considered as one mainly of addition to the double bonds of the diene portion of the rubber. Dehydrohalogenation may occur to varying degrees, depending on the conditions of the reaction and the diene present in the rubber. Part of the halogen is believed to be in the allylic position. The halogenated EPDM may be vulcanized by sulfur as well as many of the curing agents used for other halogen-containing polymers. Both types of curing systems can function in the same compound. Therefore, the halogenated EPDM rubbers can be covulcanized with the highly unsaturated elastomers such as natural rubber, cis polybutadiene, and the SBR rubbers. The excellent properties, resistance to ozone, and flexing, of the halogenated EPDM can be imparted to these elastomers using standard curing systems. Also, the uncured tack of halogenated EPDM can be improved by increasing amounts of natural rubber. In addition, other advantages are adhesion of these blends to other rubber compounds and metal. It has been shown that the cure compatibility properties of the halogenated EPDM can be varied as the halogen is increased in the rubber. Evidence has been presented which shows there is an optimum amount of halogen necessary for the best properties in mixtures with other elastomers.


Sign in / Sign up

Export Citation Format

Share Document