Polymer-Based Repair Mortar Containing Waste Perlite Powder

2021 ◽  
Vol 898 ◽  
pp. 73-79
Author(s):  
Radek Hermann ◽  
Jakub Hodul ◽  
Aleš Jakubík

This paper deals with the problematics of utilization of waste perlite from production of expanded perlite in polymer-based material. The goal of this paper is to develop repair mortar containing as high amount of waste perlite as possible as substitution for filler. The resulting mortar exhibits very high physical-mechanical properties such as high bonding strength to a large variety of building materials. The microstructure and the re-dispersibility of filler were also studied.

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jianping Zhu ◽  
Benkai Guo ◽  
Huanhuan Hou ◽  
Wenyan Zhang

Phase change materials (PCMs) have been widely used to improve the thermal energy storage capacity of building materials. In this study, the n-octadecane (OD)/expanded perlite (EP) composite PCM, which was prepared by incorporation of liquid n-octadecane into EP using the vacuum impregnation method, was used to fabricate the gypsum board. The microscopic, thermal, and mechanical properties were studied. The SEM results showed that OD could be absorbed into the pores of EP uniformly. The FI-IR results showed that OD and EP have good chemical stability. It was found that the gypsum board has best heat transfer delay when the volume fraction of OD/EP was 20% (v/v). The mechanical property of the gypsum board with OD/EP decreased. To deal with the problem, the effect of nano-Al2O3 on the gypsum board was also studied. The results showed that the mechanical properties of the gypsum board were effectively increased when the dosage of nano-Al2O3 was 0.5 wt.%, and the gypsum board had the best thermal insulation effect when the nano-Al2O3 content was 0.3 wt.%. Considering the cost and the comprehensive property, it was suggested that the optimal addition content of nano-Al2O3 was 0.3 wt.%.


2004 ◽  
Vol 449-452 ◽  
pp. 677-680 ◽  
Author(s):  
Chung Hyo Lee ◽  
Young Sup Lee ◽  
Dong Choul Cho ◽  
Chang Hee Lee

The process of Direct Bonding Copper (DBC) is performed by a spinel reaction between CuO and Al2O3. In order to develop DBC on alumina substrate with high bonding strength, alumina substrate was preformed as follows: Cu was sputter-deposited on alumina substrate. Sputter-Deposited Cu (SDC) on alumina substrate was oxidized at 673K for 30min in air atmosphere and then stabilized at 1273K for 30min in N2 gas atmosphere to improve bonding strtrength between preformed alumina substrate and SDC layer. Subsequently, the Cu-foil (300µm) was bonded on preformed-alumina substrate in N2 gas atmosphere at 1342~1345K. It was found that optimum condition of DBC on preformed-alumina substrate could be successfully obtained at 1345K for 30min. Consequently, bonding strength of DBC on alumina substrate was the high value of 80N/cm. Observation and analysis of microstructure for Cu sputtered DBC showed that reaction compounds such as CuAlO2 and CuAl2O4 approved to be formed in the vicinity of interface between Cu and alumina substrate.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012038
Author(s):  
R Hermann ◽  
P Figala ◽  
L Mészárosová ◽  
R Drochytka

Abstract This paper deals with the study and development of polymer-based adhesive with high filling ratio of secondary raw materials and waste materials. The goal of this paper is to develop adhesive mortar with the highest filling rate of secondary raw materials and waste materials as possible while preserving very high physical-mechanical properties, including flexural and compressive strength, pull-off bond strength and abrasion resistance. High-temperature fly ash, waste slag and waste packaging glass are used in this paper as fillers. The resulting mortar shows high physical-mechanical properties, including high abrasive resistance and very high bonding strength to a large variety of building materials including concrete, steel, glass, and tiles.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1963 ◽  
Vol 12 (12) ◽  

Abstract Timken 16-15-6 is a non-magnetic, austenitic, corrosion and heat resistant steel having high creep resistance at elevated temperatures and good corrosion and oxidation resistance. It age-hardens at elevated temperatures after solution quenching, and possesses very high mechanical properties. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, and joining. Filing Code: SS-150. Producer or source: Timken Roller Bearing Company.


2016 ◽  
Vol 696 ◽  
pp. 151-156 ◽  
Author(s):  
Takeshi Yabutsuka ◽  
Ryoki Karashima ◽  
Shigeomi Takai ◽  
Takeshi Yao

Micropores were formed on the surfaces of stainless steel (SUS) by sandblasting methods and Apatite Nuclei (AN) were formed in the pores. By this treatments, a bioactive SUS was fabricated. Apatite-forming ability of the SUS was evaluated by immersing in an acellular simulated body fluid. Formation of bonelike apatite was induced on the surface of the SUS within 1 day. High bonding strength of the bonelike apatite layer was achieved by a mechanical interlocking effect between the bonelike apatite formed in the pores and the SUS specimen.


2007 ◽  
Vol 561-565 ◽  
pp. 1657-1660 ◽  
Author(s):  
Masataka Hakamada ◽  
Mamoru Mabuchi

Nanoporous gold was fabricated by dealloying and their pore characteristics were further modified by thermal or acid treatment. The fabricated nanoporous gold had a ligament size of approximately 5 nm. Thermal treatment on the nanoporous gold increased the ligament size to approximately 500 nm. During the thermal treatment, ligaments are bonded across the cracks which had been generated during the dealloying. Acid treatment also increased the ligament size to approximately 500 nm; however, the acid treatment had a different effect on the pore characteristics from the thermal treatment. As a result, nanoporous gold prism microassembly with anisotropic structure was spontaneously fabricated by the acid treatment. The mechanical properties of nanoporous gold were also examined. It is estimated that the yield strength of nanosized ligaments in nanoporous gold is very high and close to the ideal strength of gold.


Sign in / Sign up

Export Citation Format

Share Document