The Use of Disperse Dyes for Dyeing of Recycled Polyethylene Terephthalate Fibres

2021 ◽  
Vol 903 ◽  
pp. 100-105
Author(s):  
Aina Bernava

Recycled polyethylene terephthalate (r-PET) is a widely recycled plastic employed for new textile production in the world. It reduces environmental impact and lowers cost of the production. For the traditional dyeing of polyethylene terephthalate (PET), commercial disperse dyes are generally used. In presented research the recycled r-PET fibres 6 den dyeing with disperse dyes Itosperse: Red, Blue and Yellow (concentration 3 Wt. %) were examined and the influence of the intensifier of a salicylic acid (with concentration of 4 - 10 g/L) in dye bath was investigated. The colour properties of dyed samples and colour fastness to washing were tested. It is concluded that the presence of the intensifier of salicylic acid improves dyeing results, but the optimal concentration differs for each dye. Colour fastness test to washing of the blue dyed samples showed the insignificant changes of colour parameters. In some cases the change of shade in presence of salicylic acid was observed.

2020 ◽  
pp. 1351010X2093313 ◽  
Author(s):  
Gino Iannace ◽  
Giuseppe Ciaburro

Plastic is widely used all over the world and its production has been increasing continuously in recent years. But plastic presents significant problems about its end-of-life given its important environmental impact. These problems impose recycling policies which provide for the collection and recycling of plastic materials. In this work, the acoustic properties of a recycled polyethylene terephthalate-based material were analyzed. The material showed good sound-absorbing characteristics, especially at high frequencies. In addition, a numerical model based on the Gaussian regression was developed to simulate the sound absorption coefficient of the material. The model returned an R-Squared value of 0.97 demonstrating excellent performance.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marziyeh Khavari ◽  
Reza Fatahi ◽  
Zabihollah Zamani

AbstractClimate change and population increase are two challenges for crop production in the world. Hazelnut (Corylus avellana L.) is considered an important nut regarding its nutritional and economic values. As a fact, the application of supporting materials as foliage sprays on plants will decrease biotic and abiotic stresses. In this study, the effects of salicylic acid (0, 1 mM and 2.5 mM) and kaolin (0, 3% and 6%) sprays were investigated on morphological, physiological, pomological, and biochemical characteristics of hazelnut. The results showed that 1 mM salicylic acid and 6% kaolin had the best effects on nut and kernel weight compared to control. Biochemical parameters such as chlorophyll a, b, a + b, and carotenoid contents showed that salicylic acid and kaolin improved pigment concentration. Proline and antioxidant contents such as phenolic acids, SOD, APX, and CAT enzyme activities increased by these applications. On the other hand, lipid peroxidation, protein content, and H2O2 content were decreased. Based on the tolerance index result, Merveille de Bollwiller cultivar showed the highest tolerance while 'Fertile de Coutard' had the lowest value. Therefore, hazelnut performance may be improved through exogenous application of the signaling (salicylic acid) and particle film (Kaolin) compounds in warmer climates.


2021 ◽  
Vol 13 (2) ◽  
pp. 621
Author(s):  
Hsin Rau ◽  
Mary Deanne M. Lagapa ◽  
Po-Hsun Chen

The number of consumers with green awareness have grown these days and as a result they have turned to purchase eco-friendly products. For this reason, this study aims to propose a method for eco-design based on the anticipatory failure determination method to develop eco-design products. By using eco-design concepts adopted from the World Business Council for Sustainable Development, the process will limit the failures and issues related to environmental impact in product design. The proposed method for eco-design product in this study follows the following procedure. First, we analyze product failure. Second, we propose the determination of the non-green phenomenon of the failure. Thirdly, we integrate the intensified non-green phenomenon to generate non-green hypotheses and fourthly, we eliminate each non-green phenomenon hypothesis by introducing the contradiction matrix of TRIZ for obtaining solutions. Finally, we assess alternative eco-design solutions by evaluation. To verify the practicality of the new procedure, a washing machine is used as an example for illustration.


Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


2020 ◽  
Vol 24 (09) ◽  

For the month of September 2020, APBN dives into the world of 3D printing and its wide range of real-world applications. Keeping our focus on the topic of the year, the COVID-19 pandemic, we explore the environmental impact of the global outbreak as well as gain insight to the top 5 vaccine platforms used in vaccine development. Discover more about technological advancements and how it is assisting innovation in geriatric health screening.


Sign in / Sign up

Export Citation Format

Share Document