Synthesis of In-Situ Titanium Carbide Particle Reinforced Titanium Composites

2005 ◽  
Vol 475-479 ◽  
pp. 963-966 ◽  
Author(s):  
Myoung Gyun Kim ◽  
Si Young Sung ◽  
Young Jig Kim

Titanium carbide particle reinforced titanium composites were prepared by in-situ synthesis reaction between titanium and carbon liquid alloys. The phases constitute and microstructures of titanium composite have been investigated by OM, XRD, SEM and EPMA. Although it was possible to synthesize titanium carbide particle reinforced titanium composites, the morphology of in-situ titanium carbide grows into typically dendritic shape due to the compositional supercooling theory. Using computerized image analysis, the average particle size and aspect ratio of in-situ formed titanium carbide is about 28.1 ㎛ and 1.9, respectively.

2007 ◽  
Vol 539-543 ◽  
pp. 1010-1015
Author(s):  
Myoung Gyun Kim ◽  
Young Jig Kim

Titanium carbide particle reinforced titanium composites were prepared by in-situ synthesis reaction between titanium and carbon liquid alloys. The phases constitute and microstructures of titanium composite have been investigated by OM, XRD, SEM, EPMA and TEM. Although it was possible to synthesize titanium carbide particle reinforced titanium composites, the morphology of in-situ titanium carbide grows into typically dendritic shape due to the compositional supercooling theory. The observation of TEM also show that interfaces between the reinforcements and the titanium matrix alloy are very clean.


2021 ◽  
Vol 69 (2) ◽  
pp. 161-170
Author(s):  
Mojtaba G. Mahmoodlu ◽  
Amir Raoof ◽  
Martinus Th. van Genuchten

Abstract This study focuses on the effects of soil textural heterogeneity on longitudinal dispersion under saturation conditions. A series of solute transport experiments were carried out using saturated soil columns packed with two filter sands and two mixtures of these sands, having d50 values of 95, 324, 402, and 480 µm, subjected to four different steady flow rates. Values of the dispersion coefficient (D) were estimated from observed in-situ distributions of calcium chlo-ride, injected as a short nonreactive tracer pulse, at four different locations (11, 18, 25, 36 cm). Analyses of the observed distributions in terms of the standard advection-dispersion equation (ADE) showed that D increased nonlinearly with travel distance and higher Peclet numbers+. The dispersion coefficient of sand sample S1 with its largest average particle size (d 50) was more affected by the average pore-water velocity than sample S4 having the smallest d 50. Results revealed that for a constant velocity, D values of sample S1 were much higher than those of sample S4, which had the smallest d 50. A correlation matrix of parameters controlling the dispersion coefficient showed a relatively strong positive relationship between D and the Peclet number. In contrast, almost no correlation was evident between D and porosity as well as grain size. The results obtained with the four sandy matrices were consistent and proved that the dispersion coefficient depends mainly on the particle size.


2018 ◽  
Vol 8 (5) ◽  
pp. 178-183
Author(s):  
Manish Kumar ◽  
Hemant K. Sharma

The objective of this study is to prepare nanogels were prepared via charged gellan gum. It was prepared by in situ cross linking reaction between two oppositely charged materials by green method without use of chemical cross linking agents. The prepared nanogels were characterized by Dynamic light scattering, scanning electron microscopy, differential scanning calorimetry and X- Ray diffractometry. The prepared formulation had average particle size of 226 nm with polydispersity index of 0.3. The doxorubicin loaded nanogel demonstrated sustained release for 20 h. The prepared nanogels were hemocompatible and cyctocompatible as revealed by hemocompatibility and MTT assay respectively. All results confirmed that these nanogels can be used for cancer treatment. Keywords: Nanogel, Chitosan, Gellan gum, Doxorubicin, Cancer.


2005 ◽  
Vol 77 (5) ◽  
pp. 815-826 ◽  
Author(s):  
Jaroslav Stejskal ◽  
Irina Sapurina

Several workers from various institutions in six countries have prepared thin films and colloidal polyaniline dispersions. The films were produced in situ on glass supports during the oxidation of anilinium chloride with ammonium peroxydisulfate in water. The average thickness of the films, assessed by optical absorption, was 125 ± 9 nm, and the conductivity of films was 2.6 ± 0.7 S cm–1. Films prepared in 1 mol l–1 HCl had a similar thickness, 109 ± 10 nm, but a higher conductivity, 18.8 ± 7.1 S cm–1. Colloidal polyaniline particles stabilized with a water-soluble polymer, poly(N-vinylpyrrolidone) [poly(1-vinylpyrrolidin-2-one)], have been prepared by dispersion polymerization. The average particle size, 241 ± 50 nm, and polydispersity, 0.26 ± 0.12, have been determined by dynamic light scattering. The preparation of these two supramolecular polyaniline forms was found to be well reproducible.


Author(s):  
Babaï Féridoun

Ruthenium Red (RR), a colored inorganic dye, has been used in electron microscopy to stain and visualize the glycoproteins of the cell coat. It has an average particle size of 1.13 nm and does not seem to penetrate the intact plasma membrane. Consequently the cytoplasmic and nuclear components of viable cells are not stained with this electron-opaque marker.We have used these properties of RR to develop a method for the study of abnormal permeability of damaged cell membrane and to stain nonviable cells. Under certain conditions, RR stains the cytoplasm of damaged cells in suspension (Figs. 1,2) or in culture in situ (Figs. 3-5). The stained (permeable) cells are easily visualized under the light and electron microscope.Cell suspension of an ascitic Novikoff Hepatoma and cell culture from a Rhabdomyosarcoma were utilized for this study.


2021 ◽  
Vol 18 ◽  
Author(s):  
Deepika Gautam ◽  
Samipta Singh ◽  
Priyanka Maurya ◽  
Manjari Singh ◽  
Sapana Kushwaha ◽  
...  

Background: Parkinsonism has a toxic cascade of neurodegeneration, with akinesia as a major manifestation. Some antioxidants have shown promise against the disease. Astaxanthin is a powerful antioxidant, demonstrates free radical scavenging, and is also a potential neuroprotective agent Objective: To formulate astaxanthin laden nanostructured lipid carriers based thermoreversible gel for better neuronal uptake and better neuronal efficacy. Methods: The method for fabricating astaxanthin-nanostructured lipid carriers (ATX-NLC) was melt-emulsification, and these were optimized using factorial design and further evaluated for diverse parameters. Neurotoxicity was induced in rats by haloperidol. The treated and non-treated rats were then witnessed for their behaviour. TBARs and GSH levels were also determined. Pharmacokinetics was studied via HPLC. Results: The average particle size (by DLS), entrapment efficiency and zeta potential of optimized ATX-NLC were 225.6 ± 3.04 nm, 65.91 ± 1.22 % and -52.64 mV respectively. Astaxanthin release (after 24 h in simulated nasal fluid) from optimized ATX-NLC was 92.5 ± 5.42 %. Its thermo-reversible nasal gel (ATX-NLC in-situ gel) was prepared using poloxamer-127. The obtained gel showed in-vivo betterment in the behaviour of animals when studied using rotarod and akinesia test. Pharmacokinetic studies showed better availability of astaxanthin in the brain on the rats treated with ATX-NLC in-situ gel as compared to those treated with ATX-in-situ gel. Conclusion: Astaxanthin loaded lipidic nanoparticulate gel can be a hopeful adjuvant therapy for Parkinsonism and holds scope for future studies.


Sign in / Sign up

Export Citation Format

Share Document