Toughness Anisotropy in Intercritically Rolled Steel Plates

2005 ◽  
Vol 495-497 ◽  
pp. 1499-1504 ◽  
Author(s):  
Roumen H. Petrov ◽  
Leo Kestens ◽  
Yvan Houbaert

The toughness anisotropy in steel plates (0.08%C, 1.52%Mn, 0.3%Si, 0.055%Nb and 0.078%V) was studied in relation to the crystallographic texture and microstructural anisotropy of the material. The plates, with a ferrite –pearlite microstructure, were obtained by hot rolling in a laboratory reversible rolling mill to 66% reduction with the final rolling pass in the two-phase (g/a) domain followed by accelerated cooling to 570°C and subsequent slow cooling to room temperature (coiling simulation). Standard size Charpy samples with their long axis oriented at 0, 22.5, 45, 67.5 and 90° with respect to the rolling direction of the plate were tested at different temperatures varying from +20°C to –80°C. Microstructures and textures of the plates were studied by means of orientation scanning electron microscopy and XRD. A specific toughness anisotropy profile was observed which could not be correlated to the crystallographic texture of the plates, which all displayed very weak, almost random transformation type textures with a maximum intensity of approximately 2x random. Therefore, it was investigated whether the toughness anisotropy might be related to the microstructural anisotropy rather than to the crystallographic texture. The study of the grain size distribution in differently oriented sections together with the distribution of the pearlite zones in these sections revealed that the directional changes in the toughness could be successfully associated to these parameters. A significant increase in the absorbed impact energy from 140J to 270J, together with a remarkable decrease of the toughness anisotropy at room temperature, was observed after annealing the hot rolled samples at an intercritical temperature followed by an isothermal treatment in the low bainite region. The observed effect was explained by the replacement of the pearlite constituents by lower bainite in the grain boundary regions which produced a local strengthening of grain boundaries.

2002 ◽  
Vol 753 ◽  
Author(s):  
Dingqiang Li ◽  
Masahiko Demura ◽  
Kyosuke Kishida ◽  
Yozo Suga ◽  
Toshiyuki Hirano

ABSTRACTThree single crystal plates of γ/γ' Ni-Al two-phase alloys with near cube, Goss and intermediate orientations between cube and Goss were cold-rolled to 300 μm-thick foils with 83% reduction. Tensile tests of the foils were performed at room temperature to study the effect of rolling microstructures and textures on the mechanical properties. The fracture strength of all the foils was very high, 1.4–1.7 GPa, having a small initial normal direction (ND) dependence and a small difference between rolling direction (RD) and transverse direction (TD). The foils fabricated from initial cube and intermediate orientations showed necking and a small fracture elongation when tensile-tested along RD, while the foil fabricated from initial Goss orientation did not show necking and fracture elongation. All the foils showed small fracture elongations due to shear band formation when tensile-tested along TD.


1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Shun Ching Lee ◽  
Tzu-Min Chen

Abstract The behavior of cryogenic nitrogen in a room-temperature evaporator six meters long is analyzed. Trapezoid fins are employed to enhance the heat flux supplied by the environment. The steady-state governing equations specified by the mixed parameters are derived from the conservations of momentum and energy. The initial value problem is solved by space integration. The fixed ambient conditions are confirmed by way of the meltback effect. An integrated model is utilized to analyze the convective effect of two-phase flow, which dominates the evaporation behavior. Another integrated model is employed to determine the total heat flux from the environment to the wet surface of the evaporator. The foundation of the formation of an ice layer surrounding the evaporator is presented. If the fin height is shorter than 0.5 m, the whole evaporator is surrounded by ice layer. If the fin height is longer than 0.5 m, the total pressure drop of nitrogen in the tube is negligible. The outlet temperature is always within the range between −12 °C and 16 °C for the evaporator with the fin height of 1.0 m. For the evaporator with dry surface, the nitrogen has the outlet temperature less than the ambient temperature at least by 5 °C.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


2021 ◽  
Vol 7 (5(59)) ◽  
pp. 28-31
Author(s):  
ТЕЙМУР МАМЕД ИЛЬЯСЛИ ◽  
ДУНИЯ ТАЛЕХ ГАСАНОВА ◽  
ИМИР ИЛЬЯС АЛИЕВ

To determine the area of glass formation in the system As2S3-ErS were synthesized alloys in the range of concentrations 0-30 mol. % ErS. The methods of physico-chemical analysis of differential-thermal (DTA), X-ray phase (RFA), microstructural (MCA) analyzes, as well as the measurement of microhardness and density determined the area of the glass and studied them physicо-chemical propertes. It is established that in the system As2S3-ErS on the basis of As2S3 during slow cooling the area of the glass reaches 17 mol. % ErS. Alloys in the concentration range 20-30 mol. % ErS are glass-crystalline. In the system at room temperature solid solutions on the basis of As2S3 are distributed up to 2.5 mol.% ErS, and on the basis of solid solutions ErS are practically not installed.


2007 ◽  
Vol 558-559 ◽  
pp. 1429-1434 ◽  
Author(s):  
Roumen H. Petrov ◽  
Orlando León García ◽  
Nuria Sánchez Mouriño ◽  
Leo Kestens ◽  
Jin Ho Bae ◽  
...  

The variations of in plane Charpy toughness anisotropy as a function of the microstructure and texture of an industrial grade of API –X80 pipeline steel was studied. Standard size Charpy samples with a long axis orientated at 0, 22.5, 45, 67.5 and 90° with respect to the rolling direction of the plate were tested at different temperatures varying from -196°C to 20°C. Microstructure and texture of the plates were investigated by means of electron backscattering diffraction (EBSD), XRD and the recently developed 3D EBSD technique. The spatial grain shape orientation distribution was examined on samples which were cut from the middle thickness of an industrial rolled plate by means of 3D EBSD and following grain shape reconstruction and approximation of the grain shape with ellipsoids. It was found that the experimentally observed 3D microstructures could well be correlated to the anisotropy of the measured Charpy impact toughness of the steel for the Charpy samples. The Charpy toughness anisotropy of the plates in the transition region where both ductile and brittle fractures take place can be related to the microstructural anisotropy characterized by the grain shape orientation and the spatial distribution of the 2nd phase.


2010 ◽  
pp. 682-682-10
Author(s):  
Antonio Augusto Gorni ◽  
José Herbert Dolabela da Silveira

2021 ◽  
Vol 1016 ◽  
pp. 906-910
Author(s):  
Xin Hua Min ◽  
Cheng Jin

In this paper,effect of the different forging processes on the microstructure and mechanical properties of the flat flat billets of TA15 titanium alloy was investigated.The flat billiets of 80 mm×150 mm×L sizes of TA15 titanium alloy are produced by four different forging processes.Then the different microstrure and properties of the flat billiets were obtained by heat treatment of 800 °C~850 °C×1 h~4h.The results show that, adopting the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling, the primary αphases content is just 10%, and there are lots of thin aciculate phases on the base. This microstructure has both high strength at room temperature and high temperature, while the properties between the cross and lengthwise directions are just the same. So the hot processing of the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling is choosed as the ideal processing for production of aircraft frame parts.


1985 ◽  
Vol 49 (353) ◽  
pp. 547-554 ◽  
Author(s):  
M. Shahmiri ◽  
S. Murphy ◽  
D. J. Vaughan

AbstractThe crystal structure and compositional limits of the ternary compound Pt2FeCu (tulameenite), formed either by quenching from above the critical temperature of 1178°C or by slow cooling, have been investigated using X-ray diffraction, transmission electron microscopy, differential thermal analysis and electron probe microanalysis.The crystal structure of Pt2FeCu, established using electron density maps constructed from the measured and calculated intensities of X-ray diffraction patterns of powdered specimens, has the (000) and (½½0) lattice sites occupied by Pt atoms and the (½0½) and (0½½) sites occupied by either Cu or Fe atoms in a random manner. The resulting face-centred tetragonal structure undergoes a disordering transformation at the critical temperature to a postulated non-quenchable face-centred cubic structure. Stresses on quenching, arising from the ordering reaction, are relieved by twinning along {101} planes or by recrystallization along with deformation twinning; always involving grain boundary fracturing.Phase relations in the system Pt-Fe-Cu have been investigated through the construction of isothermal sections at 1000 and 600°C. At 1000°C there is an extensive single phase region of solid solution around Pt2FeCu and extending to the binary composition PtFe. At 600°C the composition Pt2FeCu lies just outside this now reduced area of solid solution in a two-phase field. Comparison of the experimental results with data for tulameenite suggests that some observed compositions may be metastably preserved. The occurrence of fine veinlets of silicate or other gangue minerals in tulameenite is suggested to result from grain boundary fracturing on cooling below the critical temperature of 1178°C and to be evidence of a magmatic origin.


Sign in / Sign up

Export Citation Format

Share Document