Superplastic Behaviors of Casting AZ31 Magnesium Alloy

2007 ◽  
Vol 551-552 ◽  
pp. 237-240
Author(s):  
Hong Bo Li ◽  
J. Zhao ◽  
Jun Ting Luo ◽  
M. Hang

The superplasticity of magnesium alloy is important in industrial application. However the superplastic deformation of casting magnesium alloy is hard to be realized. In this paper, the stress–strain behaviors of casting AZ31 magnesium alloy with various strain rates at different deformation temperatures were investigated. The alloy was tested in the tensile condition with initial grain size of 25μm. It was found that the elongation of the alloy at 400°C with ε& = 4.25×10-4 s-1 is almost 200%. According to the results of uniaxial tensile experiment, the alloy exhibited superplastic deformation behavior with the slow stain rate in a temperature range of 350 to 450°C. The microstructures deformed and undeformed samples were observed with aid of optical microscope.

2007 ◽  
Vol 551-552 ◽  
pp. 387-392 ◽  
Author(s):  
Wen Juan Zhao ◽  
Hua Ding ◽  
D. Song ◽  
F.R. Cao ◽  
Hong Liang Hou

In this study, superplastic tensile tests were carried out for Ti-6Al-4V alloy using different initial grain sizes (2.6 μm, 6.5μm and 16.2 μm) at a temperature of 920°C with an initial strain rate of 1×10-3 s-1. To get an insight into the effect of grain size on the superplastic deformation mechanisms, the microstructures of deformed alloy were investigated by using an optical microscope and transmission electron microscope (TEM). The results indicate that there is dramatic difference in the superplastic deformation mode of fine and coarse grained Ti-6Al-4V alloy. Meanwhile, grain growth induced by superplastic deformation has also been clearly observed during deformation process, and the grain growth model including the static and strain induced part during superplastic deformation was utilized to analyze the data of Ti-6Al-4V alloy.


2011 ◽  
Vol 284-286 ◽  
pp. 1579-1583
Author(s):  
Ping Li Mao ◽  
Zheng Liu ◽  
Chang Yi Wang ◽  
Feng Wang

The dynamic deformation behavior of an as-extruded Mg-Gd-Y magnesium alloy was studied by using Split Hopkinson Pressure Bar (SHPB) apparatus under high strain rates of 102 s-1 to 103s-1 in the present work, in the mean while the microstructure evolution after deformation were inspected by OM and SEM. The results demonstrated that the material is not sensitive to the strain rate and with increasing the strain rate the yield stress of as-extruded Mg-Gd-Y magnesium alloy has a tendency of increasing. The microstructure observation results shown that several deformation localization areas with the width of 10mm formed in the strain rates of 465s-1 and 2140s-1 along the compression axis respectively, and the grain boundaries within the deformation localization area are parallel with each other and are perpendicular to the compression axis. While increasing the strain rate to 3767s-1 the deformation seems become uniform and all the grains are compressed flat in somewhat. The deformation mechanism of as-extruded Mg-Gd-Y magnesium alloy under high strain rate at room temperature was also discussed.


2008 ◽  
Vol 22 (18n19) ◽  
pp. 2833-2939 ◽  
Author(s):  
S. M. FATEMI-VARZANEH ◽  
A. ZAREI-HANZAKI ◽  
M. HAGHSHENAS

This work conducted to investigate the effects of accumulative roll bonding (ARB) method on achieving the ultra-fine grain microstructure in AZ31 alloy. Accordingly, a number of ARB routes at 400°C, applying thickness reductions per pass of 35%, 55%, and 85% were performed. The results indicate that both the final grain size and the degree of bonding have been dictated by the thickness reduction per pass. The larger pass reductions promote a higher degree of bonding. Increasing the total strain stimulates the formation of a more homogeneous ultra fine grain microstructure.


Sign in / Sign up

Export Citation Format

Share Document