Human Platelet Extracts Stimulate the Terminative Differentiation of Growth-Plate Chondrocytes in Rabbit

2009 ◽  
Vol 610-613 ◽  
pp. 1070-1075
Author(s):  
Li Yu ◽  
Ming Qiao Tang ◽  
Wei Qun Yan

Objective:To observe the effect of human platelet extracts on proliferation and differentiation of rabbit growth-plate chondrocytes in monolayer and fabrication of tissue engineering cartilage in vitro. Method: To determine the effects of platelet extracts at different concentrations on proliferation and differentiation of rabbit growth-plate chondrocytes using 3H-TdR、PNP and HE staining. Results: Platelet extracts had very strong stimulative effects on proliferation and differentiation of chondrocytes, especially the hypertropization (termination) of chondrocytes.

1998 ◽  
Vol 111 (6) ◽  
pp. 803-813
Author(s):  
P.R. Romano ◽  
J. Wang ◽  
R.J. O'Keefe ◽  
J.E. Puzas ◽  
R.N. Rosier ◽  
...  

We have previously identified and partially cloned Band 17, a gene expressed in growth plate chondrocytes transiting from proliferation to hypertrophy. We now rename this gene HiPER1, Histidine Phosphatase of the Endoplasmic Reticulum-1, based on the results reported here. HiPER1 encodes two proteins of 318 (HiPER1(318)) and 449 (HiPER1(449)) amino acids, which are 20–21% identical to a group of yeast acid phosphatases that are in the histidine phosphatase family. HiPER1(449) is significantly more abundant than HiPER1(318), correlating with the abundance of the alternatively spliced messages encoding HiPER449 and HiPER318. Anti-HiPER1 antibodies detect two proteins of 53 and 55 kDa in growth plate chondrocytes that are absent in articular chondrocytes. We confirm that the 53 and 55 kDa proteins are HiPER1(449) by heterologous expression of the HiPER1(449) coding sequence in chick embryo fibroblasts. The 53 and 55 kDa proteins are glycosylated forms of HiPER1(449), as N-glycosidase F digestion reduces these proteins to 48 kDa, the predicted size of HiPER1(449) without the N-terminal signal sequence. Immunocytochemistry demonstrates that HiPER1(449) is found in chondrocytes maturing from proliferation to hypertrophy, but is not detectable in resting zone, deep hypertrophic zone or articular chondrocytes, a distribution that is consistent with the message distribution. HiPER1(449) was predicted to localize to the lumen of endoplasmic reticulum by an N-terminal signal sequence and by the C-terminal sequence Ala-Asp-Glu-Leu, which closely matches the consensus signal for ER retention, Lys-Asp-Glu-Leu. We confirm this prediction by demonstrating colocalization of HiPER1(449) with the ER protein HSP47 using dual-label immunofluorescence. PTHrP, a peptide that prevents hypertrophy in chondrocytes, suppressed HiPER1 and HiPER1(449) expression in vitro, an observation that further supports a role for HiPER1 in chondrocyte maturation. The yeast phosphatase homology, localization to the endoplasmic reticulum and pattern of expression suggest that HiPER1 represents a previously unrecognized intracellular pathway, involved in differentiation of chondrocytes.


2019 ◽  
Vol 33 (8) ◽  
pp. 1128-1144 ◽  
Author(s):  
Vahideh Raeisdasteh Hokmabad ◽  
Soodabeh Davaran ◽  
Marziyeh Aghazadeh ◽  
Reza Rahbarghazi ◽  
Roya Salehi ◽  
...  

The major challenge of tissue regeneration is to develop three dimensional scaffolds with suitable properties which would mimic the natural extracellular matrix to induce the adhesion, proliferation, and differentiation of cells. Several materials have been used for the preparation of the scaffolds for bone regeneration. In this study, novel ethyl cellulose-grafted-poly (ɛ-caprolactone) (EC-g-PCL)/alginate scaffolds with different contents of nano-hydroxyapatite were prepared by combining electrospinning and freeze-drying methods in order to provide nanofibrous/macroporous structures with good mechanical properties. For this aim, EC-g-PCL nanofibers were obtained with electrospinning, embedded layer-by-layer in alginate solutions containing nano-hydroxyapatite particles, and finally, these constructions were freeze-dried. The scaffolds possess highly porous structures with interconnected pore network. The swelling, porosity, and degradation characteristics of the EC-g-PCL/alginate scaffolds were decreased with the increase in nano-hydroxyapatite contents, whereas increases in the in-vitro biomineralization and mechanical strength were observed as the nano-hydroxyapatite content was increased. The cell response to EC-g-PCL/alginate scaffolds with/or without nano-hydroxyapatite was investigated using human dental pulp stem cells (hDPSCs). hDPSCs displayed a high adhesion, proliferation, and differentiation on nano-hydroxyapatite-incorporated EC-g-PCL/alginate scaffolds compared to pristine EC-g-PCL/alginate scaffold. Overall, these results suggested that the EC-g-PCL/alginate-HA scaffolds might have potential applications in bone tissue engineering.


1997 ◽  
Vol 52 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Günter Klaus ◽  
Tanja May ◽  
Ulrike Hügel ◽  
Barbara Von Eichel ◽  
Julian Rodriguez ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 4984-4992 ◽  
Author(s):  
Zhiqiang Cheng ◽  
Chialing Tu ◽  
Luis Rodriguez ◽  
Tsui-Hua Chen ◽  
Melita M. Dvorak ◽  
...  

Extracellular calcium-sensing receptors (CaRs) and metabotropic or type B γ-aminobutyric acid receptors (GABA-B-Rs), two closely related members of family C of the G protein-coupled receptor superfamily, dimerize in the formation of signaling and membrane-anchored receptor complexes. We tested whether CaRs and two GABA-B-R subunits (R1 and R2) are expressed in mouse growth plate chondrocytes (GPCs) by PCR and immunocytochemistry and whether interactions between these receptors influence the expression and function of the CaR and extracellular Ca2+-mediated cell differentiation. Both CaRs and the GABA-B-R1 and -R2 were expressed in the same zones of the growth plate and extensively colocalized in intracellular compartments and on the membranes of cultured GPCs. The GABA-B-R1 coimmunoprecipitated with the CaR, confirming a physical interaction between the two receptors in GPCs. In vitro knockout of GABA-B-R1 genes, using a Cre-lox recombination strategy, blunted the ability of high extracellular Ca2+ concentration to activate phospholipase C and ERK1/2, suppressed cell proliferation, and enhanced apoptosis in cultured GPCs. In GPCs, in which the GABA-B-R1 was acutely knocked down, there was reduced expression of early chondrocyte markers, aggrecan and type II collagen, and increased expression of the late differentiation markers, type X collagen and osteopontin. These results support the idea that physical interactions between CaRs and GABA-B-R1s modulate the growth and differentiation of GPCs, potentially by altering the function of CaRs.


2007 ◽  
Vol 282 (46) ◽  
pp. 33698-33706 ◽  
Author(s):  
Shufang Wu ◽  
Janna K. Flint ◽  
Geoffrey Rezvani ◽  
Francesco De Luca

NF-κB is a group of transcription factors involved in cell proliferation, differentiation, and apoptosis. Mice deficient in the NF-κB subunits p50 and p52 have retarded growth, suggesting that NF-κB is involved in bone growth. Yet, it is not clear whether the reduced bone growth of these mice depends on the lack of NF-κB activity in growth plate chondrocytes. Using cultured rat metatarsal bones and isolated growth plate chondrocytes, we studied the effects of two NF-κB inhibitors (pyrrolidine dithiocarbamate (PDTC) or BAY11-7082 (BAY)), p65 short interference RNA (siRNA), and of the overexpression of p65 on chondrocyte proliferation, differentiation, and apoptosis. To further define the underlying mechanisms, we studied the functional interaction between NF-κB p65 and BMP-2 in chondrocytes. PDTC and BAY suppressed metatarsal linear growth. Such growth inhibition resulted from decreased chondrocyte proliferation and differentiation and from increased chondrocyte apoptosis. In cultured chondrocytes, the inhibition of NF-κB p65 activation (by PDTC and BAY) and expression (by p65 siRNA) led to the same findings observed in cultured metatarsal bones. In contrast, overexpression of p65 in cultured chondrocytes induced chondrocyte proliferation and differentiation and prevented apoptosis. Although PDTC, BAY, and p65 siRNA reduced the expression of BMP-2 in cultured growth plate chondrocytes, the overexpression of p65 increased it. The addition of Noggin, a BMP-2 antagonist, neutralized the stimulatory effects of p65 on chondrocyte proliferation and differentiation, as well as its anti-apoptotic effect. In conclusion, our findings indicate that NF-κB p65 expressed in growth plate chondrocytes facilitates growth plate chondrogenesis and longitudinal bone growth by inducing BMP-2 expression and activity.


2020 ◽  
Vol 7 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Pan Zhao ◽  
Xiang Li ◽  
Qin Fang ◽  
Fanglin Wang ◽  
Qiang Ao ◽  
...  

Abstract With the development of tissue engineering, the required biomaterials need to have the ability to promote cell adhesion and proliferation in vitro and in vivo. Especially, surface modification of the scaffold material has a great influence on biocompatibility and functionality of materials. The small intestine submucosa (SIS) is an extracellular matrix isolated from the submucosal layer of porcine jejunum, which has good tissue mechanical properties and regenerative activity, and is suitable for cell adhesion, proliferation and differentiation. In recent years, SIS is widely used in different areas of tissue reconstruction, such as blood vessels, bone, cartilage, bladder and ureter, etc. This paper discusses the main methods for surface modification of SIS to improve and optimize the performance of SIS bioscaffolds, including functional group bonding, protein adsorption, mineral coating, topography and formatting modification and drug combination. In addition, the reasonable combination of these methods also offers great improvement on SIS surface modification. This article makes a shallow review of the surface modification of SIS and its application in tissue engineering.


1978 ◽  
Vol 89 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Marie-Thérèse Corvol ◽  
Marie-France Dumontier ◽  
Raphael Rappaport ◽  
Harvey Guyda ◽  
Barry I. Posner

ABSTRACT Chondrocyte cultures were prepared from rabbit growth plate (GPC) and articular (ARC) chondrocytes. These two cell types have distinct morphological characteristics. The cells reached maximum numbers by days 10 and 21 for ARC and GPC, respectively. The proteoglycans (PG) contained in the cellular pool were extracted and purified by DEAE cellulose chromatography. The effect of a partially purified somatomedin peptide with insulin-like activity on [35S] sulphate incorporation into PG was evaluated. In both ARC and GPC a significant stimulation of [35S]sulphate uptake into PG subunits was obtained with 1 ng Eq./ml of somatomedin peptide. In order to obtain the same stimulatory effect with porcine insulin, a 1000-fold greater concentration was required. The electrophoretic patterns of the PG subunits on acrylamide-agarose electrophoresis were identical on control incubations and after stimulation with the somatomedin peptide. These data demonstrate in vitro biological activity of this peptide on well differentiated articular and epiphyseal growth plate chondrocytes in culture. These cultures appear to provide a sensitive biological assay for somatomedin peptides.


Sign in / Sign up

Export Citation Format

Share Document