Cutting Temperature Investigation when High-Speed Milling of SiCP/Al Composites

2011 ◽  
Vol 697-698 ◽  
pp. 198-203
Author(s):  
Ying Fei Ge ◽  
Jiu Hua Xu ◽  
Yu Can Fu

High-speed milling tests were performed on SiCp/2009Al composites in the speed range of 600-1200m/min using PCD tools to investigate the cutting temperatures and the influence factors. The results showed that the cutting temperature could reach 580°C under the given cutting conditions. Graphitization took place on the PCD tools under the high cutting temperature coupled with the effects of abrasive wear of SiC particles and catalysis of copper in the 2009 aluminum matrix. Cutting parameters, tool materials, workpiece materials and tool wear condition had significant effect on the high speed milling temperature while tool geometries had the minor effect. Among these influence factors, cutting speed was the most significant factor. Reinforcement volume fraction was the less significant factor and followed by radial depth of cut, feed rate and tool materials.

2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2011 ◽  
Vol 189-193 ◽  
pp. 2259-2263
Author(s):  
You Xi Lin ◽  
Cong Ming Yan

A three dimensional fully thermal-mechanical coupled finite element model had been presented to simulate and analyze the cutting temperature for high speed milling of TiAl6V4 titanium alloy. The temperature distribution induced in the tool and the workpiece was predicted. The effects of the milling speed and radial depth of cut on the maximum cutting temperature in the tool was investigated. The results show that only a rising of temperature in the lamella of the machined surface is influenced by the milling heat. The maximum temperature in the tool increases with increasing radial depth of cut and milling speed which value is 310°C at a speed of 60 m/min and increases to 740°C at 400m/min. The maximum temperature is only effective on a concentrated area at the cutting edge and the location of the maximum temperature moves away from the tool tip for higher radial depths of milling. The predicted temperature distribution during the cutting process is consistent with the experimental results given in the literature. The results obtained from this study provide a fundamental understanding the process mechanics of HSM of titanium alloys.


2013 ◽  
Vol 584 ◽  
pp. 20-23
Author(s):  
Mao Hua Xiao ◽  
Ning He ◽  
Liang Li ◽  
Xiu Qing Fu

The method to measure the cutting speed when high speed milling nickel alloy Inconel 718 based on semi-artificial thermocouple. The cutting parameters, tool wear and so on the cutting temperature were analyzed. The tests showed that the temperature was gradually increased with the increase of cutting speed. The cutting speed must be more than 600m/min, when the ceramic tools would perform better cutting performance in the high-speed milling nickel-based superalloy. In order to achieve more efficient machining, milling speed can be increased to more than 1000m/min. The impact amount of Radial depth of cut and feed per tooth were relatively small.


2011 ◽  
Vol 308-310 ◽  
pp. 871-876 ◽  
Author(s):  
Ying Fei Ge ◽  
Jiu Hua Xu ◽  
Yu Can Fu

High speed milling tests were performed on the SiCp/2009Al composites to investigate the cutting forces by using PCD tools in the speed range of 600-1200m/min. The results showed that the peak value of the cutting force Fy (in the tool radial direction) was in the range of 700-1450N under the present cutting condition. The maximum amplitude of cutting force vibration in the tool radial direction can reach 700N. Cutting forces increased with increasing feed rate or radial depth of cut and decreased with increasing cutting speed. Negative rake angle and relatively large tool nose radius were recommended as far as cutting forces was concerned. Materials with higher volume fraction or smaller reinforcement particle size had the bigger cutting forces. T6 heat treatment can increase the cutting forces significantly but the using of coolant can decrease the cutting forces evidently.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


2011 ◽  
Vol 418-420 ◽  
pp. 1141-1147
Author(s):  
Yong Liu ◽  
Li Tang Zhang ◽  
Zhi Hong Xu

High-speed milling is recognized as one of rapidly development machining methods. The article gives details of machining experiments with different aluminum alloys. Through a lot of single factor experiments and the orthogonal multi-factor experiments, and also use method of semi-artificial thermocouple. This paper mainly studies influence of surface roughness and residual stress with changed rotate speed, tooth load and radial depth of cut, and changed law of processing temperature for rotate speed. Though experiments shows that enhancing rotate speed may reduce surface roughness and residual stress within certain limits and the result of experiments is not agree with Carl Salomon’s theory.


2009 ◽  
Vol 69-70 ◽  
pp. 59-63 ◽  
Author(s):  
Cheng Yong Wang ◽  
De Weng Tang ◽  
Zhe Qin ◽  
Z.G. Chen ◽  
Ying Ning Hu ◽  
...  

When the pocket in die and mould is machined by high speed milling (HSM), the cutting forces increase and vibration fluctuates at the pocket corner because of the sudden change of cutting direction in general. It will cause serious wear and possible breakage of cutting tool, and poor quality of parts. By means of experiments, the cutting forces and vibration at the pocket corner with different HSM conditions are measured. The results show that the sharper pocket corner, higher cutting speeds, larger feed rate per tooth and radial depth of cut, will result in increasing of cutting forces and vibration amplitude. Thus, it will lead to be unstable during the process of high speed milling pocket corner.


2011 ◽  
Vol 697-698 ◽  
pp. 49-52 ◽  
Author(s):  
Xiao Yong Yang ◽  
Cheng Zu Ren ◽  
Guang Chen ◽  
Bing Han ◽  
Y. Wang

This study focused on the side milling surface roughness of titanium alloy under various cooling strategies and cutting parameters. The experimental results show that the cooling strategies significantly affect the surface roughness in milling Ti-6Al-4V. Surface roughness (Ra) alterations are investigated. Cutting fluid strategy made nearly all the smallest and most stable roughness values. The surface roughness values produced by all cooling strategies are obviously affected by feed, radial depth-of-cut and cutting speed. However, axial depth-of-cut has little influence.


2012 ◽  
Vol 522 ◽  
pp. 201-205
Author(s):  
You Xi Lin ◽  
Cong Ming Yan ◽  
Zheng Ying Lin

mprovements in modeling and simulation of metal cutting processes are required in advanced manufacturing technologies. A three dimensional fully thermal mechanical coupled finite element model had been applied to simulate and analyze the cutting temperature for high speed milling of TiAl6V4 titanium alloy. The temperature distribution induced in the tool and the workpiece was predicted. The effects of the milling speed and radial depth of cut on the maximum cutting temperature in the tool was investigated. The results show that only a rising of temperature in the lamella of the machined surface is influenced by the milling heat. The maximum temperature in the tool increases with increasing radial depth of cut and milling speed which value is 310°C at a speed of 60 m/min and increases to 740°C at 400m/min. The maximum temperature is only effective on a concentrated area at the cutting edge and the location of the maximum temperature moves away from the tool tip for higher radial depths of milling. The predicted temperature distribution during the cutting process is consistent with the experimental results given in the literature. The results obtained from this study provide a fundamental understanding the process mechanics of HSM of TiAl6V4 titanium alloys.


2016 ◽  
Vol 861 ◽  
pp. 75-83
Author(s):  
Ying Xing Xie ◽  
Cheng Yong Wang ◽  
Feng Ding ◽  
Wen Huang

In order to obtain better surface quality after high speed milling high hardness mold steel, and reduce tool wear in cutting process, prolong the service life of cutting tools, obtain superior levels and optimal combination of cutting parameters in the test range. Through the design of orthogonal experiment, the use of Taguchi method, and noise ratio analysis and variance analysis of dry cutting high hardness mould steel PM60 under different cutting parameters; and finally, the optimal cutting parameters of surface roughness and cutting force value were predicted and verified. Research showed that: the worst cutting parameters influenced the surface roughness Ra was radial depth of cut ae, its influence was highly significant, followed by spindle speed n and depth of axial cut ap; the most serious impact cutting parameter of cutting force F was the feed speed vf, followed by the spindle speed n and radial depth of cut ae; verification test showed that the optimal cutting parameters combination were reasonable and the calculation errors of the predicted values and experimental values were very small, indicating that Taguchi method in cutting parameters optimization of cutting mould steel PM60 was valid.


Sign in / Sign up

Export Citation Format

Share Document