Effect of Heat Treatment on the Microstructure Evolution of Ti-6Al-3Sn-3Zr-3Mo-3Nb-1W-0.2Si Titanium Alloy
Ti-6Al-3Sn-3Zr-3Mo-3Nb-1W-0.2Si (BTi-6431S) alloy is a novel two-phase high temperature titanium alloy for short-term using in aerospace industry up to 700°C. The effects of heat treatment on the microstructure evolution of BTi-6431S alloy bar were investigated through optical microscopy (OM), X-ray diffraction (XRD), electron probe microanalysis (EPMA) and transmission electron microscopy (TEM). The results show that solution treatment in β region at 1010°C followed by water quenching results in the formation of orthorhombic martensite α′′ phase, while air cooling leads to the formation of hexagonal martensite α′ phase. When solution-treated in α+β phase field at temperatures from 900°C to 980°C following by water quenching, the content of primary α phase decreases with the increase of heat treatment temperature. For the alloy subjected to identical heat treatment, the content of Al in α phase is much higher than that in β phase, while the contents of Nb, Mo and W elements in α phase are much less than those in β phase.