Tissue Engineering Strategies to Promote Bone Repair

2018 ◽  
Vol 941 ◽  
pp. 2495-2500 ◽  
Author(s):  
Anne Margaux Collignon ◽  
Gaël Y. Rochefort

Bone displays an amazing capacity for endogenous self-remodeling. However, compromised bone healing and recovering is on the ascent because of population aging, expanding rate of bone injury and the clinical requirement for the advancement of elective choices to autologous bone unions. Current strategies, including biomolecules, cell treatments, biomaterials and diverse combinations of these, are presently created to encourage the vascularization and the engraftment of the grafts, to reproduce at last a bone tissue with similar properties and attributes of the local bone. In this review, we look through the current techniques that are right now created, utilizing biomolecules, cells and biomaterials, to initiate, coordinate and potentiate bone regeneration and healing after damage and further talk about the natural procedures related with this repair.

2010 ◽  
Vol 2 (2) ◽  
pp. 20 ◽  
Author(s):  
Marcus Jäger ◽  
Philippe Hernigou ◽  
Christoph Zilkens ◽  
Monika Herten ◽  
Xinning Li ◽  
...  

In addition to osteosynthetic stabilizing techniques and autologous bone transplantations, so-called orthobiologics play an increasing role in the treatment of bone healing disorders. Besides the use of various growth factors, more and more new data suggest that cell-based therapies promote local bone regeneration. For ethical and biological reasons, clinical application of progenitor cells on the musculoskeletal system is limited to autologous, postpartum stem cells. Intraoperative one-step treatment with autologous progenitor cells, in particular, delivered promising results in preliminary clinical studies. This article provides an overview of the rationale for, and characteristics of the clinical application of cell-based therapy to treat osseous defects based on a review of existing literature and our own experience with more than 100 patients. Most clinical trials report successful bone regeneration after the application of mixed cell populations from bone marrow. The autologous application of human bone marrow cells which are not expanded ex vivo has medico-legal advantages. However, there is a lack of prospective randomized studies including controls for cell therapy for bone defects. Autologous bone marrow cell therapy seems to be a promising treatment option which may reduce the amount of bone grafting in future.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jozafina Haj ◽  
Tharwat Haj Khalil ◽  
Mizied Falah ◽  
Eyal Zussman ◽  
Samer Srouji

While biologically feasible, bone repair is often inadequate, particularly in cases of large defects. The search for effective bone regeneration strategies has led to the emergence of bone tissue engineering (TE) techniques. When integrating electrospinning techniques, scaffolds featuring randomly oriented or aligned fibers, characteristic of the extracellular matrix (ECM), can be fabricated. In parallel, mesenchymal stem cells (MSCs), which are capable of both self-renewing and differentiating into numerous tissue types, have been suggested to be a suitable option for cell-based tissue engineering therapies. This work aimed to create a novel biocompatible hybrid scaffold composed of electrospun polymeric nanofibers combined with osteoconductive ceramics, loaded with human MSCs, to yield a tissue-like construct to promote in vivo bone formation. Characterization of the cell-embedded scaffolds demonstrated their resemblance to bone tissue extracellular matrix, on both micro- and nanoscales and MSC viability and integration within the electrospun nanofibers. Subcutaneous implantation of the cell-embedded scaffolds in the dorsal side of mice led to new bone, muscle, adipose, and connective tissue formation within 8 weeks. This hybrid scaffold may represent a step forward in the pursuit of advanced bone tissue engineering scaffolds.


2015 ◽  
Vol 41 (4) ◽  
pp. e152-e157 ◽  
Author(s):  
Gabriel Castillo-Dalí ◽  
Rocío Velázquez-Cayón ◽  
M. Angeles Serrera-Figallo ◽  
Agustín Rodríguez-González-Elipe ◽  
José-Luis Gutierrez-Pérez ◽  
...  

Total or partial tissue damage and loss of function in an organ are two of the most serious and costly issues in human health. Initially, these problems were approached through organ and allogenic tissue transplantation, but this option is limited by the scarce availability of donors. In this manner, new bone for restoring or replacing lost and damaged bone tissue is an important health and socioeconomic necessity. Tissue engineering has been used as a strategy during the 21st century for mitigating this need through the development of guided bone regeneration scaffold and composites. In this manner, compared with other traditional methods, bone tissue engineering offers a new and interesting approach to bone repair. The poly-α-hydroxy acids, which include the copolymers of lactic acid and glycolic acid, have been used commonly in the fabrication of these scaffolds. The objective of our article was to review the characteristics and functions of scaffold with biomedical applications, with special interest in scaffold construction using poly(lactic-co-glycolic acid) polymers, in order to update the current methods used for fabrication and to improve the quality of these scaffolds, integrating this information into the context of advancements made in tissue engineering based on these structures. In the future, research into bone regeneration should be oriented toward a fruitful exchange between disciplines involved in tissue engineering, which is coming very close to filling the gaps in our ability to provide implants and restoration of functionality in bone tissue. Overcoming this challenge will provide benefits to a major portion of the population and facilitate substantial improvements to quality of life.


2021 ◽  
Vol 16 (1) ◽  
pp. 36-47
Author(s):  
Tianxu Zhang ◽  
Yang Gao ◽  
Weitong Cui ◽  
Yanjing Li ◽  
Dexuan Xiao ◽  
...  

With the rapid development of nanotechnology, various nanomaterials have been applied to bone repair and regeneration. Due to the unique chemical, physical and mechanical properties, nanomaterials could promote stem cells osteogenic differentiation, which has great potentials in bone tissue engineering and exploiting nanomaterials-based bone regeneration strategies. In this review, we summarized current nanomaterials with osteo-induction ability, which could be potentially applied to bone tissue engineering. Meanwhile, the unique properties of these nanomaterials and their effects on stem cell osteogenic differentiation are also discussed. Furthermore, possible signaling pathways involved in the nanomaterials- induced cell osteogenic differentiation are also highlighted in this review.


2018 ◽  
Vol 7 (3) ◽  
pp. 232-243 ◽  
Author(s):  
T. Winkler ◽  
F. A. Sass ◽  
G. N. Duda ◽  
K. Schmidt-Bleek

Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.


Physiology ◽  
2001 ◽  
Vol 16 (5) ◽  
pp. 208-213 ◽  
Author(s):  
Martin Braddock ◽  
Parul Houston ◽  
Callum Campbell ◽  
Patrick Ashcroft

Destruction of bone tissue due to disease and inefficient bone healing after traumatic injury may be addressed by tissue engineering techniques. Growth factor, cytokine protein, and gene therapies will be developed, which, in conjunction with suitable carriers, will regenerate missing bone or help in cases of defective healing.


2014 ◽  
Vol 908 ◽  
pp. 51-54 ◽  
Author(s):  
Meng Zhao

Find a good biological characteristic of repair material of bone tissue engineering has been a hot research in the Department of orthopedics. Although there are various kinds of bone repair materials and methods, but no one can perfectly replace the human bone. Especially in the sports competition fierce, sports injury is one of the most common damages. Repair the damage of the traditional method of bone often because of their poor biocompatibility, lack of materials, not with the individual growth and other problems. It greatly reduced the effects of restoration. And titanium mesh and bone graft has the advantages of simple operation, low rejection, shapeable, implantation can close bone combined with host bone formation, and have fixed a support function, bone defect repair and can obtain satisfactory.


2021 ◽  
Vol 22 (2) ◽  
pp. 903
Author(s):  
Érica Resende Oliveira ◽  
Lei Nie ◽  
Daria Podstawczyk ◽  
Ahmad Allahbakhsh ◽  
Jithendra Ratnayake ◽  
...  

Shortcomings related to the treatment of bone diseases and consequent tissue regeneration such as transplants have been addressed to some extent by tissue engineering and regenerative medicine. Tissue engineering has promoted structures that can simulate the extracellular matrix and are capable of guiding natural bone repair using signaling molecules to promote osteoinduction and angiogenesis essential in the formation of new bone tissues. Although recent studies on developing novel growth factor delivery systems for bone repair have attracted great attention, taking into account the complexity of the extracellular matrix, scaffolding and growth factors should not be explored independently. Consequently, systems that combine both concepts have great potential to promote the effectiveness of bone regeneration methods. In this review, recent developments in bone regeneration that simultaneously consider scaffolding and growth factors are covered in detail. The main emphasis in this overview is on delivery strategies that employ polymer-based scaffolds for spatiotemporal-controlled delivery of both single and multiple growth factors in bone-regeneration approaches. From clinical applications to creating alternative structural materials, bone tissue engineering has been advancing constantly, and it is relevant to regularly update related topics.


2021 ◽  
Vol 8 (10) ◽  
pp. 137
Author(s):  
Minjee Kang ◽  
Chung-Sung Lee ◽  
Min Lee

With population aging and increased life expectancy, an increasing number of people are facing musculoskeletal health problems that necessitate therapeutic intervention at defect sites. Bone tissue engineering (BTE) has become a promising approach for bone graft substitutes as traditional treatments using autografts or allografts involve clinical complications. Significant advancements have been made in developing ideal BTE scaffolds that can integrate bioactive molecules promoting robust bone repair. Herein, we review bioactive scaffolds tuned for local bone regenerative therapy, particularly through integrating synthetic liposomal vesicles or extracellular vesicles to the scaffolds. Liposomes offer an excellent drug delivery system providing sustained release of the loaded bioactive molecules. Extracellular vesicles, with their inherent capacity to carry bioactive molecules, are emerging as an advanced substitute of synthetic nanoparticles and a novel cell-free therapy for bone regeneration. We discuss the recent advance in the use of synthetic liposomes and extracellular vesicles as bioactive materials combined with scaffolds, highlighting major challenges and opportunities for their applications in bone regeneration. We put a particular focus on strategies to integrate vesicles to various biomaterial scaffolds and introduce the latest advances in achieving sustained release of bioactive molecules from the vesicle-loaded scaffolds at the bone defect site.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 287
Author(s):  
Ye Lin Park ◽  
Kiwon Park ◽  
Jae Min Cha

Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.


Sign in / Sign up

Export Citation Format

Share Document