Artificial Neural Networks Estimation for Thicknesses of Multilayer Nano-Scale Films

2019 ◽  
Vol 962 ◽  
pp. 41-48
Author(s):  
Tzong Daw Wu ◽  
Jiun Shen Chen ◽  
Ching Pei Tseng ◽  
Cheng Chang Hsieh

This study presents a real-time method for determining the thickness of each layer in multilayer thin films. Artificial neural networks (ANNs) were introduced to estimate thicknesses from a transmittance spectrum. After training via theoretical spectra which were generated by thin-film optics and modified by noise, ANNs were applied to estimate the thicknesses of four-layer nanoscale films which were TiO2, Ag, Ti, and TiO2 thin films assembled sequentially on polyethylene terephthalate (PET) substrates. The results reveal that the mean squared error of the estimation is 2.6 nm2, and is accurate enough to monitor film growth in real time.

2017 ◽  
Vol 4 (1) ◽  
pp. 11792-11792 ◽  
Author(s):  
Meysam Alizamir ◽  
Soheil Sobhanardakani

Nowadays, about 50% the world’s population is living in dry and semi dry regions and has utilized groundwater as a source of drinking water. Therefore, forecasting of pollutant content in these regions is vital. This study was conducted to compare the performance of artificial neural networks (ANNs) for prediction of As, Zn, and Pb content in groundwater resources of Toyserkan Plain. In this study, two types of artificial neural networks (ANNs), namely multi-layer perceptron (MLP) and Radial Basis Function (RBF) approaches, were examined using the observations of As, Zn, and Pb concentrations in groundwater resources of Toyserkan plain, Western Iran. Two statistical indicators, the coefficient of determination (R2) and root mean squared error (RMSE) were employed to evaluate the performances of various models. The results indicated that the best performance could be obtained by MLP, in terms of different statistical indicators during training and validation periods.


2019 ◽  
Vol 70 (3) ◽  
pp. 257-263
Author(s):  
Rıfat Kurt ◽  
Selman Karayilmazlar

There are a large number of costs that enterprises need to bear in order to produce the same product at the same quality for a more affordable price. For this reason, enterprises have to minimize their expenses through a couple of measures in order to offer the same product for a lower price by minimizing these costs. Today, quality control and measurements constitute one of the major cost items of enterprises. In this study, the modulus of elasticity values of particleboards were estimated by using Artificial Neural Networks (ANN) and other mechanical properties of particleboards in order to reduce the measurement costs in particleboard enterprises. In addition to that, the future values of modulus of elasticity were also estimated using the same variables with the purpose of monitoring the state of the process. For this purpose, data regarding the mechanical properties of the boards were randomly collected from the enterprise for three months. The sample size (n) was: 6 and the number of samples (m): 65 and a total of 65 average measurement values were obtained for each mechanical property. As a result of the implementation, the low Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD) and Mean Squared Error (MSE) performance measures of the model clearly showed that some quality characteristics could easily be estimated by the enterprises without having to make any measurements by ANN.


2021 ◽  
pp. 14-22
Author(s):  
G. N. KAMYSHOVA ◽  

The purpose of the study is to develop new scientific approaches to improve the efficiency of irrigation machines. Modern digital technologies allow the collection of data, their analysis and operational management of equipment and technological processes, often in real time. All this allows, on the one hand, applying new approaches to modeling technical systems and processes (the so-called “data-driven models”), on the other hand, it requires the development of fundamentally new models, which will be based on the methods of artificial intelligence (artificial neural networks, fuzzy logic, machine learning algorithms and etc.).The analysis of the tracks and the actual speeds of the irrigation machines in real time showed their significant deviations in the range from the specified speed, which leads to a deterioration in the irrigation parameters. We have developed an irrigation machine’s control model based on predictive control approaches and the theory of artificial neural networks. Application of the model makes it possible to implement control algorithms with predicting the response of the irrigation machine to the control signal. A diagram of an algorithm for constructing predictive control, a structure of a neuroregulator and tools for its synthesis using modern software are proposed. The versatility of the model makes it possible to use it both to improve the efficiency of management of existing irrigation machines and to develop new ones with integrated intelligent control systems.


2014 ◽  
Vol 33 (6) ◽  
pp. 419-432 ◽  
Author(s):  
Christian von Spreckelsen ◽  
Hans-Jörg von Mettenheim ◽  
Michael H. Breitner

Author(s):  
Martín Montes Rivera ◽  
Alejandro Padilla ◽  
Juana Canul-Reich ◽  
Julio Ponce

Vision sense is achieved using cells called rods (luminosity) and cones (color). Color perception is required when interacting with educational materials, industrial environments, traffic signals, among others, but colorblind people have difficulties perceiving colors. There are different tests for colorblindness like Ishihara plates test, which have numbers with colors that are confused with colorblindness. Advances in computer sciences produced digital assistants for colorblindness, but there are possibilities to improve them using artificial intelligence because its techniques have exhibited great results when classifying parameters. This chapter proposes the use of artificial neural networks, an artificial intelligence technique, for learning the colors that colorblind people cannot distinguish well by using as input data the Ishihara plates and recoloring the image by increasing its brightness. Results are tested with a real colorblind people who successfully pass the Ishihara test.


Sign in / Sign up

Export Citation Format

Share Document