Characterization of Near-Interface Traps at Dielectric/SiC Interfaces Using CCDLTS

2019 ◽  
Vol 963 ◽  
pp. 217-221
Author(s):  
Isanka Jayawardhena ◽  
Asanka Jayawardena ◽  
Chun Kun Jiao ◽  
Dallas Morisette ◽  
Sarit Dhar

Charge trapping at 4H-SiC/dielectric interfaces in 4H-SiC MOS capacitors has been investigated using constant capacitance deep level transient spectroscopy (CCDLTS). The experiments were focused on further understanding of the following aspects related to 4H-SiC/SiO2 interfaces: (i) Origin of near interface oxide traps (NITs), (ii) Effect of interfacial impurity/passivation methods and (iii) Characterization of near-interface oxide traps for different SiC wafer orientations. For the (0001) Si-face 4H-SiC/ SiO2 interface, two types of NITs are typically detected by CCDLTS, named ‘O1’ and ‘O2’ traps with emission activation energies of about 0.15±0.05 eV and 0.39±0.1 eV respectively below the 4H-SiC conduction band. Based on comparison with previous ab initio calculations, the physical identities of these defects have been suggested to be carbon dimers substituted for O dimers (‘O1’) and interstitial silicon atoms (‘O2’) in the near interfacial SiO2 respectively. In this work, it is shown for the first time that such traps are not observed for 4H-SiC/ Al2O3 interfaces, proving that these traps are inherent to the near-interfacial SiO2. In addition, the summary of CCDLTS results for Si-face with different interface trap passivation methods are included in this study. Finally, a comparison is presented for NO annealed (0001) Si-face, (11-20) a-face and (000-1) C-face interfaces that highlight the difference of CCDLTS signatures for the different crystal faces.

2001 ◽  
Vol 89 (2) ◽  
pp. 1172-1174 ◽  
Author(s):  
V. V. Ilchenko ◽  
S. D. Lin ◽  
C. P. Lee ◽  
O. V. Tretyak

2011 ◽  
Vol 109 (6) ◽  
pp. 064514 ◽  
Author(s):  
A. F. Basile ◽  
J. Rozen ◽  
J. R. Williams ◽  
L. C. Feldman ◽  
P. M. Mooney

2019 ◽  
Vol 963 ◽  
pp. 465-468
Author(s):  
Stephan Wirths ◽  
Giovanni Alfieri ◽  
Alyssa Prasmusinto ◽  
Andrei Mihaila ◽  
Lukas Kranz ◽  
...  

We investigated the influence of forming gas annealing (FGA) before and after oxide deposition on the SiO2/4H-SiC interface defect density (Dit). For MOS capacitors (MOSCAPs) that were processed using FGAs at temperatures above 1050°C, CV characterization revealed decreased flat band voltage shifts and stretch-out for different sweep directions and frequencies. Moreover, constant-capacitance deep level transient spectroscopy (CC-DLTS) was performed and showed Dit levels below 1012 cm-2eV-1 for post deposition FGA at 1200°C. Finally, lateral MOSFETs were fabricated to analyze the temperature-dependent threshold voltage (Vth) shift.


1987 ◽  
Vol 104 ◽  
Author(s):  
A. Ben Cherifa ◽  
R. Azoulay ◽  
G. Guillot

ABSTRACTWe have studied by means of deep level transient spectroscopy and photocapacitance measurements deep electron traps in undoped Ga1−xAlxAs of n-type grown by metalorganic chemical vapor deposition with 0≤x≤ 0.3. A dominant deep electron trap is detected in the series of alloys. Its activation energy is found at EC-0.8 eV in GaAs and it increases with x. Its concentration is found nearly independent of x. For the first time we observed for this level in the Ga1−xAlxAs alloys, the photocapacitance quenching effect typical for the EL2 defect in GaAs thus confirming clearly that EL2 is also created in MOCVD Ga1−xAlxAs.


Sign in / Sign up

Export Citation Format

Share Document