In2O3 Thin Films Prepared on TiAlN Substrates Using a Triethylindium and Oxygen Mixture

2007 ◽  
Vol 124-126 ◽  
pp. 1597-1600
Author(s):  
Hyoun Woo Kim ◽  
Sun Keun Hwang ◽  
Won Seung Cho ◽  
Tae Gyung Ko ◽  
Seung Yong Choi ◽  
...  

This paper reports the fabrication of indium oxide (In2O3) films using a triethylindium and oxygen mixture. The deposition has been carried out on TiAlN substrates (200-350°C). We have established the correlation between the substrate temperature and the structural properties. The films deposited at 300-350°C were polycrystalline, whereas those deposited at 200°C was close to amorphous. XRD analysis and SEM images indicated that the films grown at 350°C had grained structures with the (222) preferred orientation. The room-temperature photoluminescence spectra of the In2O3 films exhibited a visible light emission.

2020 ◽  
Vol 234 (2) ◽  
pp. 355-379 ◽  
Author(s):  
R. Marnadu ◽  
J. Chandrasekaran ◽  
P. Vivek ◽  
V. Balasubramani ◽  
S. Maruthamuthu

AbstractInter-connected network grains of tungsten trioxide (WO3) thin films were deposited on glass using a jet nebulizer spray pyrolysis (JNSP) technique by varying the substrate temperature at 350, 400, 450 and 500 °C. Phase transformation (monoclinic to orthorhombic) was observed during the film growth through X-ray diffraction (XRD) analysis. Field emission scanning electron microscope (FE-SEM) images revealed a better grain growth with smooth surface for 400 °C. The WO3 film deposited at 400 °C exhibits minimum band gap and maximum optical conductivity of 3.2 eV and 5.8 × 1014 (Ω.cm)−1. From the current-voltage (I–V) characteristics, the mean electrical conductivity is found to increase gradually and the activation energy reduced at higher substrate temperature. Cu/WO3/p–Si structured Schottky barrier diodes (SBDs) have been fabricated with different substrate temperature and it was tested under variable device temperatures ranging from 30 to 170 °C. The experimental results of all SBDs indicated a linear reduction in the ideality factor (n) with a small increment in effective barrier height (ΦB) with increase in device temperature, which is due to lateral inhomogeneity’s at the interface. Moreover, the minimum n value of 2.89 and their corresponding ΦB of 0.71 eV were recorded for device temperature at 170 °C. Compared with other SBDs, the device fabricated at 400 °C demonstrated a better thermal stability and device performance.


1992 ◽  
Vol 61 (13) ◽  
pp. 1552-1554 ◽  
Author(s):  
E. Bustarret ◽  
M. Ligeon ◽  
J. C. Bruyère ◽  
F. Muller ◽  
R. Hérino ◽  
...  

2015 ◽  
Vol 1766 ◽  
pp. 151-158 ◽  
Author(s):  
J. Díaz-Reyes ◽  
R. S. Castillo-Ojeda ◽  
J. E. Flores-Mena ◽  
J. Martínez-Juárez

ABSTRACTZnO was grown by Chemical Bath Deposition technique activated by microwaves (CBD-AμW) on corning glass substrates. The ZnO structural and optical properties are studied as a function of the urea concentration in the growth solution. ZnO chemical stoichiometry was determined by Energy-dispersive X-ray spectroscopy (EDS). The XRD analysis and Raman scattering reveal that ZnO deposited thin films showed hexagonal polycrystalline phase wurtzite type. The Raman spectra present four main peaks associated to the modes E2high, (E2high-E2low), E2low and an unidentified vibrational band observed at 444, 338, 104 and 78 cm-1. The E2low mode involves mainly Zn atoms motion in the unit cell and the E2high mode is associated to oxygen motion. The observed emission peaks in the room temperature photoluminescence spectra are associated at vacancies of zinc and oxygen in the lattice.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350032 ◽  
Author(s):  
KHALIQ MAHMOOD ◽  
SHAZIA BASHIR ◽  
M. KHALEEQ-UR-RAHMAN ◽  
NAZAR FARID ◽  
MAHREEN AKRAM ◽  
...  

The effect of substrate temperature on the structural, optical and morphological properties of ZnO thin films has been investigated. ZnO thin films were deposited on quartz substrate for various temperatures ranging from room temperature to 250°C by pulsed laser deposition (PLD) technique. Nd:YAG laser (532 nm, 100 mJ, 6 ns, 10 Hz) with corresponding fluence of 6 J/cm2 was employed for the ablation of ZnO target. Characterization of the thin films was carried out using X-ray diffraction (XRD), high resolution UV-visible spectrometer, atomic force microscope (AFM) and scanning electron microscope (SEM). From XRD analysis, the amorphous behaviors of films at room temperature and crystalline behavior along the preferred orientation of (002) is exhibited for higher substrate temperature. The transmittances of grown films increase with the increasing substrate temperature. The evaluated values of bandgap energies increase with increasing substrate temperature up to the range of 150°C and then monotonically decrease with the further increase in temperature. AFM and SEM analysis illustrates that the density and height of grains for deposited films increase significantly with increasing substrate temperature.


2003 ◽  
Vol 769 ◽  
Author(s):  
Asha Sharma ◽  
Deepak ◽  
Monica Katiyar ◽  
Satyendra Kumar ◽  
V. Chandrasekhar ◽  
...  

AbstractThe optical degradation of polysilane copolymer has been studied in spin cast thin films and solutions using light source of 325 nm wavelength. The room temperature photoluminescence (PL) spectrum of these films show a sharp emission at 368 nm when excited with a source of 325 nm. However, the PL intensity deteriorates with time upon light exposure. Further the causes of this degradation have been examined by characterizing the material for its transmission behaviour and changes occurring in molecular weight as analysed by GPC data.


1995 ◽  
Vol 388 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Yoshikazu Nakamura ◽  
Shigekazu Hirayama ◽  
Yuusaku Naota

AbstractAluminum nitride (AlN) thin films have been synthesized by ion-beam assisted deposition method. Film deposition has been performed on the substrates of silicon single crystal, soda-lime glass and alumin A. the influence of the substrate roughness on the film roughness is studied. the substrate temperature has been kept at room temperature and 473K and the kinetic energy of the incident nitrogen ion beam and the deposition rate have been fixed to 0.5 keV and 0.07 nm/s, respectively. the microstructure of the synthesized films has been examined by X-ray diffraction (XRD) and the surface morphology has been observed by atomic force microscopy(AFM). IN the XRD patterns of films synthesized at both room temperature and 473K, the diffraction line indicating the alN (10*0) can be discerned and the broad peak composed of two lines indicating the a1N (00*2) and a1N (10*1) planes is also observed. aFM observations for 100 nm films reveal that (1) the surface of the films synthesized on the silicon single crystal and soda-lime glass substrates is uniform and smooth on the nanometer scale, (2) the average roughness of the films synthesized on the alumina substrate is similar to that of the substrate, suggesting the evaluation of the average roughness of the film itself is difficult in the case of the rough substrate, and (3) the average roughness increases with increasing the substrate temperature.


2015 ◽  
Vol 1792 ◽  
Author(s):  
Jiantuo Gan ◽  
Augustinas Galeckas ◽  
Vishnukanthan Venkatachalapathy ◽  
Heine N. Riise ◽  
Bengt G. Svensson ◽  
...  

ABSTRACTCuxO thin films have been deposited on a quartz substrate by reactive radio frequency (rf) magnetron sputtering at different target powers Pt (140-190 W) while keeping other growth process parameters fixed. Room-temperature photoluminescence (PL) measurements indicate considerable improvement of crystallinity for the films deposited at Pt>170 W, with most pronounced excitonic features being observed in the film grown using Pt=190 W. These results corroborate well with the surface morphology of the films, which was found more flat, smooth and homogeneous for Pt >170 W films in comparison with those deposited at lower powers.


2017 ◽  
Vol 25 (2) ◽  
pp. 243-250
Author(s):  
Nguyen Nang Dinh ◽  
Le Dinh Trong ◽  
Pham Duy Long

Bulk nanostructured perovskites of La0.67-xLi3xTiO3 (LLTO) were prepared by using thermally ball-grinding from compounds of La2O3, Li2CO3 and TiO2. From XRD analysis, it was found that LTTO materials were crystallized with nano-size grains of an average size of 30 nm. The bulk ionic conductivity was found strongly dependent on the Li+ composition, the samples with x = 0.11 (corresponding to a La0.56Li0.33TiO3 compound) have the best ionic conductivity, which is ca. 3.2 x 10-3 S/cm at room temperature. The LLTO amorphous films were made by electron beam deposition. At room temperature the smooth films have ionic conductivity of 3.5 x 10-5  S/cm and transmittance of 80%. The optical bandgap of the films was found to be of 2.3 eV. The results have shown that the perovskite La0.56Li0.33TiO3  thin films can be used for a transparent solid electrolyte in ionic battery and in all-solid-state electrochromic devices, in particular.    


Sign in / Sign up

Export Citation Format

Share Document