Advanced Manufacturing Concepts for Crystalline Silicon Solar Cells: Phosphorous Doping and Contact Opening Process

2007 ◽  
Vol 124-126 ◽  
pp. 923-926 ◽  
Author(s):  
Sang Wook Park ◽  
Eun Chel Cho ◽  
Jae Hee Yu ◽  
Dea Won Kim

In this work, we report on the last investigation of POP (selective Phosphorous doping and contact Opening Process) in crystalline silicon solar cells. For the industrial solar cells, it must be very highly doped to decrease the high-contact resistance and not very shallow so that it is not perforated during paste firing, which would short-circuit the junction. We made improvement involves making separate diffusions for the different regions since the requirements are so different: a heavily doped and thick region under the contacts, a thin and lowly doped region under the passivating layer. Furthermore we opened the metal contact area to make a narrow grid lines simultaneously. As a result we could increase fill factor and reduce contact resistance by industrial process.

2016 ◽  
Vol 33 (3) ◽  
pp. 172-175 ◽  
Author(s):  
Kazimierz Drabczyk ◽  
Jaroslaw Domaradzki ◽  
Grazyna Kulesza-Matlak ◽  
Marek Lipinski ◽  
Danuta Kaczmarek

Purpose The purpose of this paper was investigation and comparison of electrical and optical properties of crystalline silicon solar cells with ITO or TiO2 coating. The ITO, similar to TiO2, is very well transparent in the visible part of optical radiation; however, its low resistivity (lower that 10-3 Ohm/cm) makes it possible to use simultaneously as a transparent electrode for collection of photo-generated electrical charge carriers. This might also invoke increasing the distance between screen-printed metal fingers at the front of the solar cell that would increase of the cell’s active area. Performed optical investigation showed that applied ITO thin film fulfill standard requirements according to antireflection properties when it was deposited on the surface of silicon solar cell. Design/methodology/approach Two sets of samples were prepared for comparison. In the first one, the ITO thin film was deposited directly on the crystalline silicon substrate with highly doped emitter region. In the second case, the TCO film was deposited on the same type of silicon substrate but with additional ultrathin SiO2 passivation. The fingers lines of 80 μm width were then screen-printed on the ITO layer with two different spaces between fingers for each set. The influence of application of the ITO electrode and the type of metal electrodes patterns on the electrical performance of the prepared solar cells was investigated through optical and electrical measurements. Findings The electrical parameters such as short-circuit current (Jsc), open circuit voltage (Voc), fill factor (FF) and conversion efficiency were determined on a basis of I-V characteristics. Short-circuit current density (Jsc) was equal to 32 mA/cm2 for a solar cell with a typical antireflection layer and 31.5 mA/cm2 for the cell with ITO layer, respectively. Additionally, electroluminescence of prepared cells was measured and analysed. Originality/value The influence of the properties of ITO electrode on the electrical performance of crystalline silicon solar cells was investigated through complex optical, electrical and electroluminescence measurements.


2017 ◽  
Vol 53 (46) ◽  
pp. 6239-6242 ◽  
Author(s):  
Sheng Yuan ◽  
Yongji Chen ◽  
Zongwei Mei ◽  
Ming-Jian Zhang ◽  
Zhou Gao ◽  
...  

Novel Ag-doped glass frits remarkably improved the interface between bulk Ag and n-Si, which greatly reduced the contact resistance of c-Si solar cells.


Solar Energy ◽  
2017 ◽  
Vol 151 ◽  
pp. 163-172 ◽  
Author(s):  
Siyu Guo ◽  
Geoffrey Gregory ◽  
Andrew M. Gabor ◽  
Winston V. Schoenfeld ◽  
Kristopher O. Davis

2021 ◽  
Author(s):  
Saba Siraj ◽  
Sofia Akbar Tahir ◽  
Adnan Ali

Abstract The aim of this research work was to assess the impact of front and rear grid metallization pattern on the performance of silicon solar cells. We have investigated the effect of front grid metallization design and geometry on the open-circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and efficiency (ŋ) of silicon solar cells by using Griddler 2.5 simulation program. We used different number of metal fingers ranging from 80–120 having width of 60 µm and different number of busbars ranging from 1–5 busbars on the front and rear side of solar cells for optimization. We have also calculated the efficiency and fill factor at different values of front contact resistance ranging from (0.1–100) mohm-cm2, front and rare layer sheet resistances ranging from (60–110) ohm/sq and different edge gaps. We found that the maximum efficiency and fill factor was obtained with those parameters, when front and rare contact resistances were taken as same. We have designed an optimized silicon solar cell with 115 number of fingers, 4 busbars, front and rare contact resistance of 0.1 mohm-cm2 and front and rare layer sheet resistance of 60 ohm/sq. In this way we were able to successfully optimize the silicon solar cell having efficiency and fill factor of 19.49 % and 81.36 % respectively, for our best optimized silicon solar cell.


2009 ◽  
pp. NA-NA ◽  
Author(s):  
Stefan Kontermann ◽  
Matthias Hörteis ◽  
Alexander Ruf ◽  
Sergio Feo ◽  
Ralf Preu

Sign in / Sign up

Export Citation Format

Share Document