Thixoforming of Hypereutectic AlSi12Cu2NiMg Automotive Pistons

2019 ◽  
Vol 285 ◽  
pp. 446-452 ◽  
Author(s):  
A.B. Semenov ◽  
Thanh Binh Ngo ◽  
B.I. Semenov

The microstructure and mechanical properties of thixoformed AlSi12Cu2NiMg (AЛ25) aluminium alloy were investigated. Cooling slope method was employed in order to produce non-dendritic billets. Thixoforming process parameters were determined as follows: die temperature of 250 °C, billet temperature of 555 - 560 °C, punch velocity of 7 mm/s. Mechanical properties of automotive piston with ultimate strength of 309 MPa, yield strength of 274 MPa and elongation of 6.8 % in the T6 condition were obtained successfully, implying success of advantages of cooling slope method.

2019 ◽  
Vol 285 ◽  
pp. 203-209
Author(s):  
Thanh Binh Ngo ◽  
A.B. Semenov ◽  
B.I. Semenov

In this paper, the microstructure and mechanical properties of thixoformed 1973 (AlZn5.5Mg2.4Cu1.7Zr) wrought aluminium alloy were investigated. A cooling slope was used to produce non-dendritic billets. Thixoforming process parameters were determined as follows: die temperature of 250 °C, feedstock temperature of 600 - 605 °C, punch velocity of 7 mm/s. Mechanical properties of thixoformed with ultimate strength of 461 MPa and elongation of 3,1 % in the T2 condition. The lower properties of the thixoformed material are mainly associated with porosity.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Mohd Shukor Salleh ◽  
Nurul Naili Mohamad Ishak ◽  
Saifudin Hafiz Yahaya

In this study, the effect of different amounts of copper (CU) on the microstructure and mechanical properties of thixoformed Al-6Si-xCu-0.3Mg (x= 3, 4 and 5, mass fraction, %) were investigated. The alloys were prepared via cooling slope casting technique, before there were thixoformed using compression press. All of the alloys were then characterized using optical microscope (OM), scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The results obtained revealed that cooling slope casting produced a non-dendritic microstructure and the intermetallic phase in the thixoformed samples was refined and evenly distributed. The results also revealed that as the Cu content in the alloy increases, the hardness and tensile strength of the thixoformed alloys also increase. The hardness of thixoformed Al-6Si-3Cu was 104.1 HV while the hardness of Al-6Si-5Cu alloy was increased to 118.2 HV. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed alloy which contained 3wt.% Cu were 241 MPa, 176 MPa and 3.2% respectively. The ultimate tensile strength, yield strength and elongation to fracture of the alloy that contained 6wt.% of Cu were 280 MPa, 238 MPa and 1.2% respectively. The fracture surface of the tensile sample with lower Cu content exhibited dimple rupture while higher Cu content showed a cleavage fracture.


2014 ◽  
Vol 794-796 ◽  
pp. 1077-1082 ◽  
Author(s):  
Hai Lin Yang ◽  
Shou Xun Ji ◽  
Douglas Watson ◽  
Mark White ◽  
Zhong Yun Fan

The present paper introduces the microstructure and mechanical properties of the Al-Mg-Si-Mn alloy made by recycled materials, in which the impurity levels of iron are mainly concerned. It is found that the increased Fe content reduces the ductility and yield strength but slightly increases the UTS of the diecast alloy. The tolerable Fe content is 0.45wt.%, at which the recycled alloys are still able to produce castings with the mechanical properties of yield strength over 140MPa, UTS over 280MPa and elongation over 15%.The Fe content is steadily accumulated in the alloy with the increase of recycle times. However, after 13 cycles, the recycled alloys are still able to produce ductile alloys with satisfied mechanical properties.


2008 ◽  
Vol 141-143 ◽  
pp. 623-628 ◽  
Author(s):  
Ju Fu Jiang ◽  
Ying Wang ◽  
Zhi Ming Du ◽  
Shou Jing Luo

In this paper, thixoforging of a magazine plate made of AZ91D magnesium alloy were investigated by means of numerical simulation and experiments. Numerical simulation results show that with increasing punch displacement, local bending, formation of a concave shell part and bulk plastic deformation occurs in billet continuously. Equivalent strain and stress increase and the temperature of the semi-solid billet decreases. When the temperature of the semi-solid billet or the die temperature is elevated, equivalent stain and stress decrease. Optimal technological parameters such as a billet temperature of 545°C, die temperature of 450°C and punch velocity of 15 mm/s were obtained by numerical simulation. Experimental results demonstrate that magazine plates with high mechanical properties such as tensile strength of 316.8 MPa, yield strength of 228.3 MPa and elongation of 12.6 % can be manufactured successfully when the optimal technological parameters selected according to the results of numerical simulation are applied.


2010 ◽  
Vol 146-147 ◽  
pp. 1222-1226
Author(s):  
Shu Bo Li ◽  
Ya Ling Qin ◽  
Han Li ◽  
Wen Bo Du

The Mg matrix composite (Mg2Si/Mg-5Zn-2.5Er) was prepared using repeated plastic working (RPW) technique. and the effects of the number of RPW cycles on the microstructure and mechanical properties of these composites were investigated. The results indicated that the added silicon particles fully reacted with the magnesium matrix, and theMg2Si/Mg-5Zn-2.5Er composites were successfully achieved. When the number of RPW cycle increased, the size of the Mg2Si particles decreased, and the grain size of the matrix alloy reached the minimum when 200 RPW cycles was used. The best mechanical properties were also identified as 394 MPa ultimate strength, and 363 MPa yield strength, when 200 RPW cycles were used.


2014 ◽  
Vol 794-796 ◽  
pp. 526-531 ◽  
Author(s):  
Douglas Watson ◽  
Shou Xun Ji ◽  
Zhong Yun Fan

Super-ductile diecast aluminium alloys are critical to future lightweighting of automotive body structures. This paper introduces a diecast aluminium alloy that can satisfy the requirements of these applications. After a review of currently available alloys, the requirement of a diecast aluminium alloy for automotive body structural parts is proposed and an Al-Mg-Si system is suggested. The effect of the alloying elements, in the composition, has been investigated on the microstructure and mechanical properties, in particular the yield strength, the ultimate tensile strength and elongation.


2011 ◽  
Vol 686 ◽  
pp. 84-89 ◽  
Author(s):  
Yan Yang ◽  
Xiao Dong Peng ◽  
Wei Dong Xie ◽  
Qun Yi Wei ◽  
Gang Chen ◽  
...  

Mg-9Li-3Al-xSr alloys were prepared in vacuum furnace under the protection of argon atmosphere. Effects of Sr content on microstructure and mechanical properties of as-cast Mg-9Li-3Al alloys were investigated. The results indicate that α-Mg and β-Li phases exist in all alloys. The addition of Sr causes grain refinement of the test alloys and new Al4Sr phase is formed in the alloys. The mechanical properties of alloys initially increase and then decrease with the increase of Sr content. Sr has obvious refining effect on the alloys and the distribution of Al4Sr phase is much more uniformly when Sr content is 2.5wt%,. The as-cast Mg-9Li-3Al-2.5Sr alloy exhibits an optimum combination of mechanical properties with the ultimate strength, yield strength and elongation of 186MPa, 149MPa and 11% respectively, improving obviously compared with Mg-9Li-3Al alloy. With the continuing increase of Sr content, the mechanical properties of the test alloys decrease.


Sign in / Sign up

Export Citation Format

Share Document