scholarly journals Therapeutic Effects of Hydrogen in Animal Models of Parkinson's Disease

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kyota Fujita ◽  
Yusaku Nakabeppu ◽  
Mami Noda

Since the first description of Parkinson's disease (PD) nearly two centuries ago, a number of studies have revealed the clinical symptoms, pathology, and therapeutic approaches to overcome this intractable neurodegenerative disease. 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) are neurotoxins which produce Parkinsonian pathology. From the animal studies using these neurotoxins, it has become well established that oxidative stress is a primary cause of, and essential for, cellular apoptosis in dopaminergic neurons. Here, we describe the mechanism whereby oxidative stress evokes irreversible cell death, and propose a novel therapeutic strategy for PD using molecular hydrogen. Hydrogen has an ability to reduce oxidative damage and ameliorate the loss of nigrostriatal dopaminergic neuronal pathway in two experimental animal models. Thus, it is strongly suggested that hydrogen might provide a great advantage to prevent or minimize the onset and progression of PD.

2010 ◽  
Vol 31 (5) ◽  
pp. 531-540 ◽  
Author(s):  
Sankar Surendran ◽  
Srinivasagam Rajasankar

Synapse ◽  
2018 ◽  
Vol 73 (3) ◽  
pp. e22077 ◽  
Author(s):  
Steven Vetel ◽  
Sophie Sérrière ◽  
Johnny Vercouillie ◽  
Jackie Vergote ◽  
Gabrielle Chicheri ◽  
...  

2014 ◽  
Vol 20 (12) ◽  
pp. 1036-1044 ◽  
Author(s):  
Fei-Long Zhang ◽  
Yi He ◽  
Yan Zheng ◽  
Wen-Jing Zhang ◽  
Qi Wang ◽  
...  

2020 ◽  
Vol 19 (6) ◽  
pp. 1197-1201 ◽  
Author(s):  
Jing Li ◽  
Yue Liu ◽  
Li Wang ◽  
Zhaowei Gu ◽  
Zhigang Huan ◽  
...  

Purpose: To investigation the protective effects of hesperetin against 6-hydroxydopamine (6-OHDA)- induced neurotoxicity. Methods: SH-SY5Y cells were incubated with 6-OHDA to create an in vitro model of neurotoxicity. This model was used to test the neuroprotective effects of hesperetin. Cell viability was assessed by MTT and lactate dehydrogenase (LDH) release assays. Flow cytometry and western blot were used to quantify apoptosis. Oxidative stress was evaluated by determining intracellular glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS). Results: In SH-SY5Y cells, treatment with 6-OHDA decreased cell viability and promoted LDH release. However, exogenous hesperetin protected against 6-OHDA-mediated toxicity. Similarly, although incubation with 6-OHDA induced apoptosis and increased cleaved caspase-3 and -9 levels, treatment with hesperetin protected against these effects. Treatment with 6-OHDA also led to significant oxidative stress, as indicated by reduced GSH and SOD levels and increased MDA and ROS levels in SH-SY5Y cells. However, these changes were reversed by pre-treatment with hesperetin. Of interest, hesperetin led to changes in 6-OHDA-induced expression of NRF2, heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCL) catalytic subunit (GCLC), and GCL modulatory (GCLM). Conclusion: Hesperetin protects against cell toxicity, apoptosis, and oxidative stress via activation of NRF2 pathway in a 6-OHDA-induced model of neurotoxicity. Future studies should investigate the use of hesperetin as a potential therapeutic approach for prevention or management of Parkinson’s disease. Keywords: Hesperetin, 6-OHDA, Neurotoxicity, NRF2, Parkinson’s disease


2002 ◽  
Vol 64 (1) ◽  
pp. 125-135 ◽  
Author(s):  
Ramón Soto-Otero ◽  
Estefanı́a Méndez-Álvarez ◽  
Álvaro Hermida-Ameijeiras ◽  
Ana Marı́a López-Real ◽  
José Luis Labandeira-Garcı́a

Sign in / Sign up

Export Citation Format

Share Document