scholarly journals Sun Exposure, Vitamin D Metabolism, and Skin Cancer

2004 ◽  
Vol 79 (5) ◽  
pp. 699-700 ◽  
Author(s):  
Mark V. Dahl
2015 ◽  
Vol 18 (1) ◽  
pp. 24-29
Author(s):  
Corina-Daniela Ene ◽  
◽  
Amalia-Elena Anghel ◽  
Alina Muşetescu ◽  
Ilinca Nicolae ◽  
...  

The relation between sun exposure, vitamin D synthesis and skin cancer is a complex one. Radiations from the sun stimulate the cutaneous vitamin D synthesis, one way, and promote the development of the skin cancer on the other way. A lot of epidemiologic and experimental studies revealed contradictory results regarding the relation between vitamin D and malignant melanoma. The vitamin D deficiency, accurate biochemical indicator of the vitamin D status in the body, could be implicated in promoting metastasis of the malignant melanoma by activation of the cellular proliferation, stimulation of the neutrophils chemotaxis and promoting angiogenesis. Identification of therapeutic strategies to normalise serum levels of the 25-OH vitamin D3 could represent useful tools in preventing melanoma metastasis.


2020 ◽  
Vol 87 (S1) ◽  
pp. 84-87
Author(s):  
Jaka Jakob Hodnik ◽  
Jožica Ježek ◽  
Jože Starič

AbstractThis Research Reflection short review will discuss vitamin D metabolism, its role in nutrition, disease prevention, and welfare of dairy cattle, as well as its toxicity. Vitamin D is an important fat-soluble vitamin. However, some researchers regard it as a hormone due to its function in the organism. Its role is not limited just to Ca homoeostasis and bone metabolism but is also associated with immunity. In dairy cattle it is known for preventing milk fever. Cows can acquire vitamin D in many ways for example through feed, parenteral injections or through UVB irradiation from the sun or artificial lighting. The vitamin D in feed can either be plant-/ fungi- based ergocalciferol or animal-based cholecalciferol. There is currently only one registered feed vitamin D supplement for cattle in the European Union and it is cholecalciferol. Animals can also synthesize their own vitamin D when 7-dihydrocholesterol in the skin is irradiated with UVB light resulting in cholecalciferol production. Despite its importance, many cattle are deficient in vitamin D due to inadequate supplementation or insufficient sun exposure. In a study performed at the Veterinary Faculty in Slovenia 12 high producing Holstein Friesian cows at a commercial dairy farm were blood tested for vitamin D status for three succeeding months and all but one were vitamin D insufficient in all testings. The cows were not exposed to direct sunlight and the content of vitamin D3 in feed was <400 IU/kg dry matter, which is less than half of the NRC (2001) recommendation. Deficiency can also occur due to diseases affecting the gastrointestinal tract, such as paratuberculosis, which lower the absorptive capacity of the gut. Vitamin D can be toxic if cows are over-supplemented or consume large quantities of plants like Trisetum flavescens, which contain an active form of vitamin D-calcitriol or its glycosides, that are activated by digestion in the rumen.


2008 ◽  
Vol 105 (2) ◽  
pp. 668-673 ◽  
Author(s):  
J. Moan ◽  
A. C. Porojnicu ◽  
A. Dahlback ◽  
R. B. Setlow

2020 ◽  
Vol 7 (1A) ◽  
pp. 320-328
Author(s):  
Maria Mexitalia ◽  
Martvera Susilawati ◽  
Rina Pratiwi ◽  
JC Susanto

Latar Belakang : Paparan sinar matahari pada kulit merupakan cara terbaik untuk sintesis vitamin D. Kadar vitamin D yang adekuat dalam tubuh merupakan proteksi terhadap berbagai penyakit seperti penyakit degeneratif, kanker dan juga infeksi saluran napas. Beberapa penelitian menghubungkan kadar vitamin D yang rendah dengan morbiditas dan mortalitas COVID-19. Hal ini menyebabkan fenomena baru pada masyarakat yaitu kebiasaan berjemur. Tujuan : Artikel ini akan membahas tentang metabolisme vitamin D, peran sinar matahari dalam mengaktifkan vitamin D di dalam tubuh, dan peran vitamin D dalam berbagai penyakit, khususnya mekanisme imunitas untuk COVID-19. Diskusi : Vitamin D meningkatkan kekebalan alami seluler terutama dengan cara menginduksi peptida antimikroba, yang meliputi cathelicidin, LL-37, 1,25-dihdroxyvitamin D dan defensins. Selain itu vitamin D akan meningkatkan sekresi hidrogen peroksida pada sel monosit. Pemberian vitamin D dosis tinggi sebanyak 10.000 IU/hari selama beberapa minggu dilanjutkan 5000 IU/hari bermanfaat untuk mencegah COVID-19, walaupun hasilnya masih memerlukan penelitian lebih lanjut. Absorpsi sinar matahari ke dalam tubuh manusia dipengaruhi oleh warna kulit, penggunaan bahan pakaian dan tabir surya , dan luas pajanan. Paparan sinar matahari sebesar satu Minimal Erythemal Dose (MED) pada orang dewasa dapat meningkatkan konsentrasi vitamin D setara dengan suplementasi 10.000 – 25.000 IU. Penelitian pada bayi yang diberi paparan 3 kali seminggu @ 5 menit pada jam 10.00-14.00, dengan paparan 50% area tubuh selama 2 bulan, mendapatkan kenaikan 25(OH)D sebesar 8,9 ng/mL. Simpulan : Vitamin D yang diaktifkan oleh paparan sinar matahari sangat bermanfaat sebagai proteksi berbagai penyakit termasuk juga pada COVID-19, walaupun efektifitasnya masih memerlukan penelitian lebih lanjut. Kata Kunci : COVID-19, vitamin D, paparan sinar matahari   Background : The exposured of sunlight on the skin is the best way for vitamin D synthesis. Adequate vitamin D levels are protection against various diseases such as degenerative diseases, cancer and also respiratory infections. Several studies have linked between low vitamin D levels with COVID-19 morbidity and mortality. This causes a new phenomenon in the community, namely sunbathing. Purpose : This review rearticle will discuss about vitamin D metabolism, the role of sunlight in activating vitamin D in the body, and the role of vitamin D in various diseases, specifically the immune mechanism for COVID-19.Discussion : Vitamin D increases cellular innate immunity mainly by inducing antimicrobial peptides, which include cathelicidin, LL-37, 1,25-dihdroxyvitamin D and defensins, and also increase the secretion of hydrogen peroxide in monocyte cells. The administration of high-dose vitamin D of 10,000 IU / day for several weeks followed by 5000 IU / day is useful to prevent COVID-19, although the results still require further research. The sun exposure to activated vitamin D body is affected by skin color, using of clothing and sunscreen, and area of ??exposure. Sun exposure of one Minimum Erythemal Dose (MED) in adults can increase vitamin D concentrations equivalent to 10,000 - 25,000 IU vitamin D supplementation. Study on infants who were given exposure 3 times a week @ 5 minutes at 10:00 to 14:00, with exposure 50% of body surface area for 2 months, increased 25(OH)D of 8.9 ng/mL. Conclusion : Vitamin D which is activated by sun exposure is very useful as protection for various diseases including COVID-19, although its effectiveness still requires further research. Keywords : vitamin D, sun exposure, COVID-19.


1994 ◽  
Vol 143 (2) ◽  
pp. 367-374 ◽  
Author(s):  
T Pitcher ◽  
I N Sergeev ◽  
R Buffenstein

Abstract Vitamin D may be endogenously synthezised in the skin in the presence of sunlight or, alternatively, acquired from dietary sources. Cryptomys damarensis appear to have a naturally impoverished vitamin D status with low plasma concentrations of both 25-hydroxyvitamin D (25(OH)D; <5 ng/ml) and 1,25-dihydroxyvitamin D (1,25(OH)2D; <20 pg/ml). We attribute this to their underground habitat and herbivorous habits. We questioned whether these subterranean mammals could utilize sunlight-mediated pathways and therefore compared vitamin D metabolism and function when animals were (a) housed naturally (control), (b) given an oral vitamin D3 (D3) supplement (1 IU/g dry matter food eaten per day) and (c) exposed to 10 h of sunlight. Control animals exhibited a highly efficient apparent fractional absorption of both calcium (Ca) and inorganic phosphorus (Pi) (>90%), passive mode of intestinal mineral uptake, yet tightly regulated serum ionized calcium (Ca2+). The ratio of 25(OH)D-1α-hydroxylase (1-OHase) to 25(OH)D-24R-hydroxylase (24-OHase) activity in the kidney, corresponded with a state of vitamin D deficiency. Cryptomys damarensis responded to both oral D3 supplementation and sun exposure by an increase in plasma concentration of 1,25(OH)2D with a commensurate decline (P<0·05) in 1-OHase activity, and a resulting decrease (P<0·05) in the ratio of 1-OHase:24-OHase activity. Despite these changes, the intestinal mode of Ca uptake and plasma total Ca, Ca2+ and Pi remained unchanged with either treatment. Responses to sunlight were less pronounced than that of oral D3 supplementation. These data confirm that naturally vitamin D-deficient mole-rats can convert vitamin D to the active hormone 1,25(OH)2D, and indicate that mole-rats function optimally at the low concentrations of vitamin D metabolites found naturally. Furthermore, these animals exhibit a highly efficient vitamin D-independent mode of intestinal Ca absorption. Journal of Endocrinology (1994) 143, 367–374


2021 ◽  
pp. 30-35
Author(s):  
Suzanne J. Dobbinson ◽  
Afaf Girgis ◽  
Bruce K. Armstrong ◽  
Anne E. Cust

This chapter covers epidemiologic evidence for the association of ultraviolet (UV) radiation with cancer, psychosocial and behavioral research on sun exposure and sun protection, and mixed messages regarding the role of vitamin D in influencing cancer risk. The focus is primarily on sun exposure, but indoor tanning is also covered. The evidence is convincing for a causal relationship between UV radiation and skin cancer, but there appears to be a protective association of UV radiation with some internal cancers, namely colorectal, prostate, and breast cancers and non-Hodgkin lymphoma. This association may or may not be mediated by cutaneous vitamin D production. Predictors of sun exposure and sun protection behaviors and recommendations for UV protection are reviewed. A summary of psychosocial and behavioral skin cancer prevention interventions and approaches for different target groups is presented and linked to theoretical models that help to explain behavior change.


2010 ◽  
pp. 191-219 ◽  
Author(s):  
Florence S. G. Cheung ◽  
Juergen K. V. Reichardt

2015 ◽  
Vol 10 (2) ◽  
pp. 131 ◽  
Author(s):  
Michael F Holick ◽  
Stuart Cook ◽  
Gustavo Suarez ◽  
Mark Rametta ◽  
◽  
...  

Vitamin D is not only an essential nutrient for bone homeostasis but has also been implicated in many other disorders including cardiovascular disease (CVD) and autoimmune diseases. Here we review the problem of vitamin D deficiency and guidelines to help achieve adequate levels in both the general population and in multiple sclerosis (MS) patients and its role in MS and impact on treatment. Although there is a lack of consensus on vitamin D deficiency and insufficiency, they have been defined as a serum level of 25(OH)D <50 nmol/L or 52.5–72.5 nmol/L, respectively. Deficiency is common in all age groups. Vitamin D is probably involved in the prevention of a number of disease states and 25(OH)D is thought to regulate at least 2,000 genes. Vitamin D toxicity is very rare, with none seen at doses up to 20,000 IU/day. However, the majority of primary care clinicians are not aware of the recommended dose for vitamin D supplementation and optimum serum level in terms of patients with MS. Several organisations have concluded that vitamin D screening cannot be recommended in the general population. Guidelines have been published on treatment and prevention of vitamin D deficiency, particularly for at-risk groups and during pregnancy. There is much evidence for the protective effects of vitamin D in MS. A higher level of sun exposure and intake of vitamin D as well as of serum 25 (OH)D, are associated with a lower risk of MS. It also has a beneficial effect on the clinical course of MS, such as lowering the risk of relapses. Growing evidence indicates that the effects of interferon-beta are additively enhanced by 25(OH)D in MS and this may be due to its modulating vitamin D metabolism.


Sign in / Sign up

Export Citation Format

Share Document