scholarly journals Statistical assessment of vegetation dynamics within protected areas using remote sensing data

2013 ◽  
Vol 43 (4) ◽  
pp. 5
Author(s):  
Maria Elena Menconi ◽  
David Grohmann

This study aimed to test the effectiveness of protected areas to preserve vegetation. The first step was to identify vegetation suitable areas, designed as areas with optimal morphological terrain features for a good photosynthetic activity. These areas were defined according to the following landscape factors: slope, altitude, aspect and land use. Enhanced vegetation index (EVI) was chosen as vegetation dynamics indicator. This method is based on a statistical approach using remote sensing data in a geographic information system (GIS) environment. The correlation between EVI and landscape factor was evaluated using the frequency ratio method. Classes of landscape factors that show good correlation with a high EVI were combined to obtain vegetation suitable areas. Once identified, these areas and their vegetation dynamics were analysed by comparing the results obtained whenever these areas are included or not included in protected areas. A second EVI dataset was used to verify the accuracy in identifying vegetation suitable areas and the influence of each landscape factor considered in their identification. This validation process showed that vegetation suitable areas are significant in identifying areas with good photosynthetic activity. The effects analysis showed a positive influence of all landscape factors in determining suitability. This methodology, applied to central regions of Italy, shows that the vegetation suitable areas located inside protected areas are <em>greener</em> than those outside protected areas. This suggests that the protective measures established by the institution of the parks have proved to be effective, at least as far as the status of vegetation development is concerned.

2017 ◽  
Vol 21 (12) ◽  
pp. 6235-6251 ◽  
Author(s):  
Guiomar Ruiz-Pérez ◽  
Julian Koch ◽  
Salvatore Manfreda ◽  
Kelly Caylor ◽  
Félix Francés

Abstract. Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill this gap, but require novel methodologies to exploit their spatio-temporal information that could potentially be incorporated into model calibration and validation frameworks. The present study tackles this problem by suggesting an automatic calibration procedure, based on the empirical orthogonal function, for distributed ecohydrological daily models. The procedure is tested with the support of remote sensing data in a data-scarce environment – the upper Ewaso Ngiro river basin in Kenya. In the present application, the TETIS-VEG model is calibrated using only NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The results demonstrate that (1) satellite data of vegetation dynamics can be used to calibrate and validate ecohydrological models in water-controlled and data-scarce regions, (2) the model calibrated using only satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed discharge at the outlet and (3) the proposed automatic calibration methodology works satisfactorily and it allows for a straightforward incorporation of spatio-temporal data into the calibration and validation framework of a model.


2019 ◽  
Vol 55 (9) ◽  
pp. 1329-1337
Author(s):  
N. V. Gopp ◽  
T. V. Nechaeva ◽  
O. A. Savenkov ◽  
N. V. Smirnova ◽  
V. V. Smirnov

2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2020 ◽  
Vol 42 ◽  
pp. 69-81

Light pollution in Slovenia in 2019 with special regard to Natura 2000 areas The article shows the state of light pollution in Slovenia. Remote sensing data from the Suomi satellite were analysed. Light pollution is shown by radiance expressed in nW/(sr cm2 ). In Slovenia, there are large differences in state of light polution. The most polluted areas are located in the area of larger settlements and in areas with higher levels of infrastructure. The spread of light does not stop at the borders of protected areas, so we also analyzed the state of light pollution in Natura 2000 sites in Slovenia. It turns out that the most lightpolluted areas are those that lie around larger settlements or suburbanised regions (Ljubljansko Barje, Šmarna gora, Drava).


2020 ◽  
Vol 165 ◽  
pp. 03020
Author(s):  
Kunlin Wang ◽  
Yi Ma ◽  
Fangrong Zhou

Tree barriers in transmission line corridors are an important safety hazard.Scientific prediction of tree height and monitoring tree height changes are essential to solve this hidden danger. In this paper, the advantages of airborne lidar and optical remote sensing data are combined to research the method of tree height inversion. Based on glas data of lidar,waveform parameters such as waveform length, waveform leading edge length and waveform trailing edge length were extracted from waveform data by gaussian decomposition method.Terrain feature parameters were extracted from aster gdem data.The tree crown information was extracted from the optical remote sensing image by means of the mean shift algorithm. Then extract the vegetation index with high correlation with tree height.Finally, the extracted waveform feature parameters, topographic feature parameters, and crown index and vegetation index with high correlation are used as model input variables. The tree height inversion model was established using four regression methods, including multiple linear regression (mlr), support vector machine (svm), random forest (rf), and bp neural network (bpnn). The accuracy evaluation was conducted, and it was concluded that the tree height inversion model based on random forest obtained the best accuracy effect.


2009 ◽  
Vol 36 (3) ◽  
pp. 253-260 ◽  
Author(s):  
IRENE GARONNA ◽  
IOAN FAZEY ◽  
MOLLY E. BROWN ◽  
NATHALIE PETTORELLI

SUMMARYThe growth of human populations has many direct and indirect impacts on tropical forest ecosystems both locally and globally. This is particularly true in the Solomon Islands, where coastal rainforest cover still remains, but where climate change and a growing human population is putting increasing pressure on ecosystems. This study assessed recent primary productivity changes in the Kahua region (Makira, Solomon Islands) using remote sensing data (normalized difference vegetation index, NDVI). In this area, there has been no commercial logging and there is no existing information about the state of the forests. Results indicate that primary productivity has been decreasing in recent years, and that the recent changes are more marked near villages. Multiple factors may explain the reported pattern in primary productivity. The study highlights the need to (1) assess how accurately remote sensing data-based results match field data on the ground; (2) identify the relative contribution of the climatic, socioeconomic and political drivers of such changes; and (3) evaluate how primary productivity changes affect biodiversity level, ecosystem functioning and human livelihoods.


Sign in / Sign up

Export Citation Format

Share Document