scholarly journals Acute Responses of Strength and Running Mechanics to Increasing and Decreasing Pain in Patients With Patellofemoral Pain

2017 ◽  
Vol 52 (5) ◽  
pp. 411-421
Author(s):  
David M. Bazett-Jones ◽  
Wendy Huddleston ◽  
Stephen Cobb ◽  
Kristian O'Connor ◽  
Jennifer E. Earl-Boehm

Context:  Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both. Objective:  To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP. Design:  Crossover study. Setting:  University research laboratory. Patients or Other Participants:  Seventeen participants (10 men, 7 women) with PFP. Intervention(s):  Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets. Main Outcome Measure(s):  Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05. Results:  Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: −13.97° ± 6.41°, posttest: −12.84° ± 6.45°; P = .003). Peak hip-extension (pretest: −2.31 ± 0.46) and hip-abduction (pretest: −2.02 ± 0.35) moments decreased after both the TENS (extension: −2.15 ± 0.48 Nm/kg, P = .015; abduction: −1.91 ± 0.33 Nm/kg, P = .015) and RSLS (extension: −2.18 ± 0.52 Nm/kg, P = .003; abduction: −1.87 ± 0.36 Nm/kg, P = .039) protocols. Conclusions:  This study presents a novel and effective method of increasing pain in persons with PFP. Functionally increased pain after RSLS coincides with reduced hip-extensor muscle strength and decreased plantar-flexion angle during running. The TENS treatment decreased pain during running in those with PFP but failed to influence strength. Hip moments were reduced by both protocols, which may demonstrate that acute increases or decreases in pain cause runners to change their mechanics.

2008 ◽  
Vol 43 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Thomas Kernozek ◽  
Christopher J. Durall ◽  
Allison Friske ◽  
Matthew Mussallem

Abstract Context: Ankle braces may enhance ankle joint proprioception, which in turn may affect reflexive ankle muscle activity during a perturbation. Despite the common occurrence of plantar-flexion inversion ankle injuries, authors of previous studies of ankle muscle latencies have focused on inversion stresses only. Objective: To examine the latency of the peroneus longus (PL), peroneus brevis (PB), and tibialis anterior (TA) muscles in response to various degrees of combined plantar-flexion and inversion stresses in braced and unbraced asymptomatic ankles. Design: Repeated measures. Setting: University biomechanics laboratory. Patients or Other Participants: Twenty-eight healthy females and 12 healthy males (n = 40: mean age = 23.63 years, range = 19 to 30 years; height = 172.75 ± 7.96 cm; mass = 65.53 ± 12.0 kg). Intervention(s): Participants were tested under 2 conditions: wearing and not wearing an Active Ankle T1 brace while dropping from a custom-made platform into 10°, 20°, and 30° of plantar flexion and 30° of inversion. Main Outcome Measure(s): The time between platform drop and the onset of PL, PB, and TA electromyographic activity was measured to determine latencies. We calculated a series of 2-way analyses of variance to determine if latencies were different between the conditions (braced and unbraced) and among the plantar-flexion angles (α = .05). Results: No interaction was found between condition and plantar-flexion angle. No significant main effects were found for condition or plantar-flexion angle. Overall means for braced and unbraced conditions were not significantly different for each muscle tested. Overall means for angle for the PL, PB, and TA were not significantly different. Conclusions: Reflexive activity of the PL, PB, or TA was unaffected by the amount of plantar flexion or by wearing an Active Ankle T1 brace during an unanticipated plantar-flexion inversion perturbation.


2014 ◽  
Vol 30 (3) ◽  
pp. 423-430 ◽  
Author(s):  
John McDaniel ◽  
N. Scott Behjani ◽  
Steven J. Elmer ◽  
Nicholas A.T. Brown ◽  
James C. Martin

Previous authors have reported power-pedaling rate relationships for maximal cycling. However, the joint-specific power-pedaling rate relationships that contribute to pedal power have not been reported. We determined absolute and relative contributions of joint-specific powers to pedal power across a range of pedaling rates during maximal cycling. Ten cyclists performed maximal 3 s cycling trials at 60, 90, 120, 150, and 180 rpm. Joint-specific powers were averaged over complete pedal cycles, and extension and flexion actions. Effects of pedaling rate on relative joint-specific power, velocity, and excursion were assessed with regression analyses and repeated-measures ANOVA. Relative ankle plantar flexion power (25 to 8%;P= .01;R2= .90) decreased with increasing pedaling rate, whereas relative hip extension power (41 to 59%;P< .01;R2= .92) and knee flexion power (34 to 49%;P< .01;R2= .94) increased with increasing pedaling rate. Knee extension powers did not differ across pedaling rates. Ankle joint angular excursion decreased with increasing pedaling rate (48 to 20 deg) whereas hip joint excursion increased (42 to 48 deg). These results demonstrate that the often-reported quadratic power-pedaling rate relationship arises from combined effects of dissimilar joint-specific power-pedaling rate relationships. These dissimilar relationships are likely influenced by musculoskeletal constraints (ie, muscle architecture, morphology) and/or motor control strategies.


2009 ◽  
Vol 18 (1) ◽  
pp. 76-90 ◽  
Author(s):  
John D. Willson ◽  
Irene S. Davis

Context:Lower extremity (LE) weakness might be associated with altered mechanics during weight bearing in subjects with patellofemoral pain syndrome (PFPS).Objective:To analyze LE strength, mechanics, and the association between these variables among women with and without PFPS during a simulated athletic task.Design:Case control.Setting:Motion-analysis laboratory.Subjects:20 women with PFPS and 20 healthy women.Main Outcome Measures:Peak isometric lateral trunk-flexion, hip-abduction, hip external-rotation, knee-flexion, and knee-extension strength, as well as hip- and knee-joint excursions and angular impulses during single-leg jumps.Results:PFPS subjects produced less hip-abduction, hip external-rotation, and trunk lateral-flexion force than the control group. The PFPS group also demonstrated greater hip-adduction excursion and hip-abduction impulses. The association between the strength measurements and LE mechanics was low.Conclusions:Women with PFPS demonstrate specific weaknesses and altered LE mechanics. Weakness is not, however, highly correlated with observed differences in mechanics.


2013 ◽  
Vol 48 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Matthew K. Seeley ◽  
Jihong Park ◽  
Daniel King ◽  
J. Ty Hopkins

Context: Knee injuries are prevalent, and the associated knee pain is linked to disability. The influence of knee pain on movement biomechanics, independent of other factors related to knee injuries, is difficult to study and unclear. Objective: (1) To evaluate a novel experimental knee-pain model and (2) better understand the independent effects of knee pain on walking and running biomechanics. Design: Crossover study. Setting: Biomechanics laboratory. Patients or Other Participants: Twelve able-bodied volunteers (age = 23 ± 3 years, height = 1.73 ± 0.09 m, mass = 75 ± 14 kg). Intervention(s): Participants walked and ran at 3 time intervals (preinfusion, infusion, and postinfusion) for 3 experimental conditions (control, sham, and pain). During the infusion time interval for the pain and sham conditions, hypertonic or isotonic saline, respectively, was continuously infused into the right infrapatellar fat pad for 22 minutes. Main Outcome Measure(s): We used repeated-measures analyses of variance to evaluate the effects of time and condition on (1) perceived knee pain and (2) key biomechanical characteristics (ground reaction forces, and joint kinematics and kinetics) of walking and running (P &lt; .05). Results: The hypertonic saline infusion (1) increased perceived knee pain throughout the infusion and (2) reduced discrete characteristics of each component of the walking ground reaction force, walking peak plantar-flexion angle (range = 62°–67°), walking peak plantar-flexion moment (range = 95–104 N·m), walking peak knee-extension moment (range = 36–49 N·m), walking peak hip-abduction moment (range = 62–73 N·m), walking peak support moment (range = 178–207 N·m), running peak plantar-flexion angle (range = 38°–77°), and running peak hip-adduction angle (range = 5–21°). Conclusions: This novel experimental knee pain model consistently increased perceived pain during various human movements and produced altered running and walking biomechanics that may cause abnormal knee joint-loading patterns.


2022 ◽  
pp. 107110072110693
Author(s):  
Yuzuru Sakakibara ◽  
Atsushi Teramoto ◽  
Tetsuya Takagi ◽  
Satoshi Yamakawa ◽  
Hiroaki Shoji ◽  
...  

Background: This study aimed to evaluate the effects of the ankle flexion angle during anterior talofibular ligament (ATFL) reconstruction on ankle kinematics, laxity, and in situ force of a graft. Methods: Twelve cadaveric ankles were evaluated using a 6–degrees of freedom robotic system to apply passive plantar flexion and dorsiflexion motions and multidirectional loads. A repeated measures experiment was designed using the intact ATFL, transected ATFL, and reconstructed ATFL. During ATFL reconstruction (ATFLR), the graft was fixed at a neutral position (ATFLR 0 degrees), 15 degrees of plantar flexion (ATFLR PF15 degrees), and 30 degrees of plantar flexion (ATFLR PF30 degrees) with a constant initial tension of 10 N. The 3-dimensional path and reconstructed graft tension were simultaneously recorded, and the in situ force of the ATFL and reconstructed grafts were calculated using the principle of superposition. Results: The in situ forces of the reconstructed grafts in ATFLR 0 degrees and ATFLR PF 15 degrees were significantly higher than those of intact ankles. The ankle kinematics and laxity produced by ATFLR PF 30 degrees were not significantly different from those of intact ankles. The in situ force on the ATFL was 19.0 N at 30 degrees of plantar flexion. In situ forces of 41.0, 33.7, and 21.9 N were observed at 30 degrees of plantar flexion in ATFLR 0, 15, and 30 degrees, respectively. Conclusion: ATFL reconstruction with the peroneus longus (PL) tendon was performed with the graft at 30 degrees of plantar flexion resulted in ankle kinematics, laxity, and in situ forces similar to those of intact ankles. ATFL reconstructions performed with the graft fixed at 0 and 15 degrees of the plantar flexion resulted in higher in situ forces on the reconstructed graft. Clinical Relevance: Fixing the ATFL tendon graft at 30 degrees of plantar flexion results in an in situ force closest to that of an intact ankle and avoids the excessive tension on the reconstructed graft.


2015 ◽  
Vol 31 (4) ◽  
pp. 250-257 ◽  
Author(s):  
Lauren C. Benson ◽  
Kristian M. O’Connor

About half of all runners sustain a running-related injury every year. Exertion may contribute to risk of injury by altering joint mechanics. The purpose of this study was to examine the effects of exertion on runners’ joint mechanics using principal component analysis (PCA). Three-dimensional motion analysis of the lower extremity was performed on 16 healthy female runners before and after their typical training run. PCA was used to determine exertion-related changes in joint mechanics at the ankle, knee, and hip. Statistical significance for repeated-measures MANOVA of the retained principal components at each joint and plane of motion was at P < .05. Exercise effects were identified at the ankle (greater rate of eversion [PC2: P = .027], and decreased plantar flexion moment [overall: P = .044] and external rotation moment [PC3: P = .003]), knee (increased adduction [overall: P = .044] and internal rotation [PC3: P = .034], and decreased abduction moment [overall: P = .045]), and hip (increased internal rotation [PC1: P = .013] and range of mid- to late-stance rotation [PC2: P = .009], and decreased internal rotation moment [PC1: P = .001]). The observed changes in running mechanics reflect a gait profile that is often linked to running injury. The effects of more strenuous activity may result in mechanics that present an even greater risk for injury.


1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Junya Saeki ◽  
Soichiro Iwanuma ◽  
Suguru Torii

The structure of the first toe is independent of that of the other toes, while the functional difference remains unclear. The purpose of this study was to investigate the difference in the force generation characteristics between the plantar-flexion of the first and second–fifth metatarsophalangeal joints (MTPJs) by comparing the maximal voluntary plantar-flexion torques (MVC torque) at different MTPJs and ankle positions. The MVC torques of the first and second–fifth MTPJs were measured at 0°, 15°, 30°, and 45° dorsiflexed positions of the MTPJs, and at 20° plantar-flexed, neutral, and 20° dorsiflexed positions of the ankle. Two-way repeated measures analyses of variance with Holm’s multiple comparison test (MTPJ position × ankle position) were performed. When the MTPJ was dorsiflexed at 0°, 15°, and 30°, the MVC torque of the first MTPJ when the ankle was dorsiflexed at 20° was higher than that when the ankle was plantar-flexed at 20°. However, the ankle position had no significant effect on the MVC torque of the second–fifth MTPJ. Thus, the MVC torque of the first MTPJ was more affected by the ankle position than the second–fifth MTPJs.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1075
Author(s):  
Denisa Manojlović ◽  
Martin Zorko ◽  
Darjan Spudić ◽  
Nejc Šarabon

Patellofemoral pain (PFP) is often associated with impaired muscle strength, flexibility, and stability. It has been suggested that inter-leg asymmetries have an important role in increasing the risk of musculoskeletal injuries, including PFP. Thus, the aim of this study was to identify significant asymmetries and determine the effects of a symmetry targeted exercise program in patients with PFP. Eighteen patients aged 13 to 54 years (24.17 ± 12.52 years) with PFP participated in this study. Strength, flexibility and stability outcomes of the trunk, hip, knee and ankle muscles were assessed. A single-group pretest–posttest design was used to assess changes in inter-leg and agonist–antagonist asymmetries resulting from the 8-week period of the supervised exercise program. Results indicated a significant improvement in inter-leg symmetry regarding bilateral stance in a semi-squat position (p = 0.020, d = 0.61, df = 17) and ankle plantarflexion (p = 0.003, d = 0.32, df = 17) and ankle dorsiflexion strength (p < 0.001, d = 0.46, df = 17). In addition, the ratio of ankle dorsiflexion/plantarflexion (p = 0.036, d = 1.14, df = 17) and hip extension/flexion (p = 0.031, d = 0.94, df = 16) changed significantly during the intervention period. To our knowledge, this was the first study to evaluate inter-leg asymmetries resulting from a period of a supervised exercise program. The results indicate that an exercise program focusing on individual asymmetries may influence specific deficits and contribute to better rehabilitation outcomes.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Luciana Bahia Gontijo ◽  
Polianna Delfino Pereira ◽  
Camila Danielle Cunha Neves ◽  
Ana Paula Santos ◽  
Dionis de Castro Dutra Machado ◽  
...  

Introduction. The proprioceptive neuromuscular facilitation (PNF) is a physiotherapeutic concept based on muscle and joint proprioceptive stimulation. Among its principles, the irradiation is the reaction of the distinct regional muscle contractions to the position of the application of the motions.Objective. To investigate the presence of irradiated dorsiflexion and plantar flexion and the existing strength generated by them during application of PNF trunk motions.Methods. The study was conducted with 30 sedentary and female volunteers, the PNF motions of trunk flexion, and extension with the foot (right and left) positioned in a developed equipment coupled to the load cell, which measured the strength irradiated in Newton.Results. Most of the volunteers irradiated dorsal flexion in the performance of the flexion and plantar flexion during the extension motion, both presenting an average force of 8.942 N and 10.193 N, respectively.Conclusion. The distal irradiation in lower limbs became evident, reinforcing the therapeutic actions to the PNF indirect muscular activation.


Sign in / Sign up

Export Citation Format

Share Document