human study
Recently Published Documents


TOTAL DOCUMENTS

1338
(FIVE YEARS 598)

H-INDEX

57
(FIVE YEARS 13)

2022 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Riccardo Bortoletto ◽  
Matteo Balestrieri ◽  
Sagnik Bhattacharyya ◽  
Marco Colizzi

Antiseizure medications are the cornerstone pharmacotherapy for epilepsy. They are not devoid of side effects. In search for better-tolerated antiseizure agents, cannabinoid compounds and other N-acylethanolamines not directly binding cannabinoid receptors have drawn significant attention. Among these, palmitoylethanolamide (PEA) has shown neuroprotective, anti-inflammatory, and analgesic properties. All studies examining PEA’s role in epilepsy and acute seizures were systematically reviewed. Preclinical studies indicated a systematically reduced PEA tone accompanied by alterations of endocannabinoid levels. PEA supplementation reduced seizure frequency and severity in animal models of epilepsy and acute seizures, in some cases, similarly to available antiseizure medications but with a better safety profile. The peripheral-brain immune system seemed to be more effectively modulated by subchronic pretreatment with PEA, with positive consequences in terms of better responding to subsequent epileptogenic insults. PEA treatment restored the endocannabinoid level changes that occur in a seizure episode, with potential preventive implications in terms of neural damage. Neurobiological mechanisms for PEA antiseizure effect seemed to include the activation of the endocannabinoid system and the modulation of neuroinflammation and excitotoxicity. Although no human study was identified, there is ground for testing the antiseizure potential of PEA and its safety profile in human studies of epilepsy.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Uta Barbara Metzing ◽  
Christian von Loeffelholz ◽  
Ricardo Steidl ◽  
Bernd Romeike ◽  
René Winkler ◽  
...  

AbstractWe provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining. CD68 mRNA increased with sepsis in skeletal muscle of patients and animals (p < 0.05). Mainly the inositol-requiring enzyme 1α branch of the UPR was upregulated as shown by elevated X-box binding-protein 1 (XBP1u) and its spliced isoform (XBP1s) mRNA (p < 0.05, respectively). Increased expression of Gadd34 indicated activation of PRKR-Like Endoplasmic Reticulum Kinase (PERK) branch of the UPR, and was only observed in mice (p < 0.001) but not human study subjects. Selected cell death signals were upregulated in human and murine muscle, demonstrated by increased bcl-2 associated X protein mRNA and TUNEL staining (p < 0.05). In conclusion we provide a first characterization of the UPR in skeletal muscle in human sepsis.


Author(s):  
Pushpinder Walia ◽  
Abhishek Ghosh ◽  
Shubhmohan Singh ◽  
Anirban Dutta

Background: Maladaptive neuroplasticity related learned response in substance use disorder (SUD) can be ameliorated using non-invasive brain stimulation (NIBS); however, inter-individual variability needs to be addressed for clinical translation. Objective: Our first objective was to develop a hypothesis for NIBS for learned response in SUD based on competing neurobehavioral decision systems model. Next objective was to conduct computational simulation of NIBS of cortico-cerebello-thalamo-cortical (CCTC) loop in cannabis use disorder (CUD) related dysfunctional &ldquo;cue-reactivity&rdquo; &ndash; a closely related construct of &ldquo;craving&rdquo; that is a core symptom. Our third objective was to test the feasibility of our neuroimaging guided rational NIBS approach in healthy humans. Methods: &ldquo;Cue-reactivity&rdquo; can be measured using behavioral paradigms and portable neuroimaging, including functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG), metrics of sensorimotor gating. Therefore, we conducted computational simulation of NIBS, including transcranial direct current stimulation(tDCS) and transcranial alternating current stimulation(tACS) of the cerebellar cortex and deep cerebellar nuclei(DCN), of the CCTC loop for its postulated effects on fNIRS and EEG metrics. We also developed a rational neuroimaging guided NIBS approach for cerebellar lobule (VII) and prefrontal cortex based on healthy human study. Results: Simulation study of cerebellar tDCS induced gamma oscillations in the cerebral cortex while tTIS induced gamma-to-beta frequency shift. Experimental fNIRS study found that 2mA cerebellar tDCS evoked similar oxyhemoglobin(HbO) response in-the-range of 5x10-6M across cerebellum and PFC brain regions (=0.01); however, infra-slow (0.01&ndash;0.10 Hz) prefrontal cortex HbO driven(phase-amplitude-coupling, PAC) 4Hz, &plusmn;2mA (max.) cerebellar tACS evoked HbO in-the-range of 10-7M that was statistically different (=0.01) across those brain regions. Conclusion: Our healthy human study showed the feasibility of fNIRS of cerebellum and PFC as well as fNIRS-driven ctACS at 4Hz that may facilitate cerebellar cognitive function via the frontoparietal network. Future work needs to combine fNIRS with EEG for multi-modal imaging.


2022 ◽  
Author(s):  
Zheng Sun ◽  
Kathleen Lee-Sarwar ◽  
Rachel S. Kelly ◽  
Jessica A. Lasky-Su ◽  
Augusto A. Litonjua ◽  
...  

It has been widely recognized that a critical time window for neurodevelopment occurs in early life, and that the host's gut microbiome plays an important role in neurodevelopment. While murine models have demonstrated that the maternal gut microbiome also influences offspring brain development, for humans it is still unclear if the critical time window for the association between the gut microbiome and neurodevelopment is prenatal, postnatal or both. Here we leverage a large-scale human study and compare the associations between the gut microbiota and metabolites from mothers and their children with the children's neurodevelopment. We show, for the first time, that the maternal gut microbiome is more relevant than the children's gut microbiome to the children's neurodevelopment in the first year of life. Interestingly, the roles of the same taxa with respect to neurodevelopment can be opposite at the two stages of fetal neurodevelopment. These findings shed light on potential therapeutic interventions to prevent neurodevelopmental disorders.


Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
David Huang ◽  
Nicholas Pachuda ◽  
John Michael Sauer ◽  
Dessie Dobbins ◽  
Jonathan Steckbeck

Antimicrobial peptides (AMPs) have recently gained attention for their potential to treat diseases related to bacterial and viral infections, as many traditional antimicrobial drugs have reduced efficacy in treating these infections due to the increased prevalence of drug-resistant pathogens. PLG0206, an engineered cationic antibiotic peptide that is 24 residues long, has been designed to address some limitations of other natural AMPs, such as toxicity and limited activity due to pH and ion concentrations. Nonclinical studies have shown that PLG0206 is highly selective for targeting bacterial cells and is not toxic to human blood cells. Antibiofilm experiments demonstrated that PLG0206 is effective at reducing both biotic and abiotic biofilm burdens following direct biofilm contact. PLG0206 has rapid and broad-spectrum activity against both Gram-positive and Gram-negative bacteria that are implicated as etiologic agents in periprosthetic joint infections, including multidrug-resistant ESKAPE pathogens and colistin-resistant isolates. A recent first-in-human study demonstrated that PLG0206 is well tolerated and safe as an intravenous infusion in healthy volunteers. Studies are planned to determine the efficacy of PLG0206 in patients for the treatment of periprosthetic joint infections. This review summarizes the chemistry, pharmacology, and microbiology of PLG0206 and explores its current preclinical, clinical, and regulatory status.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tzofnat Bareli ◽  
Hadas Levi Ahdoot ◽  
Hilla Ben Moshe ◽  
Royi Barnea ◽  
Gal Warhaftig ◽  
...  

Substance use disorders (SUDs) are associated with depression and anxiety, with the latter being one of the major factors in substance-seeking and relapse. Due to dose-dependent sedative side effects there is limited efficacy of baclofen treatment for SUDs. Here we suggest the use of a novel combination of opipramol and baclofen (O/B) which is known to attenuate anxiety and depression, for the facilitation of recovery from SUDs. Since both opipramol and baclofen have a common downstream signal transduction, their individual doses could be reduced while still maintaining the benefits of the combination. We tested the O/B combination in both animals and patients. Rats treated with O/B showed significant attenuation in craving behavior and in relapse rate during withdrawal from cocaine. In a double-blind, placebo-controlled pilot study, conducted in a residential detoxification center, 14 males and 3 females, aged 28–60 years were assigned to a study (n = 6) and a placebo (n = 11) group (placebo group: 40 ± 10.5 years; O/B group 40 ± 10.8 years). The participants completed scales measuring depression, anxiety and craving symptoms and provided saliva samples for stress hormone examination [cortisol and dehydroepiandrosterone-sulfate (DHEA-S)]. Participants with polysubstance use disorder (PsUD) treated with O/B showed a reduction in cravings and depression and an increase in DHEA-S and in the DHEA-S/cortisol ratio. Our findings indicate a beneficial effect of O/B treatment. This study suggests a novel candidate for pharmacological treatment of patients with SUD and comorbid mood/anxiety disorders that may facilitate their rehabilitation.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6364
Author(s):  
Amy L. Shaver ◽  
Swapnil Sharma ◽  
Nikita Nikita ◽  
Daniel S. Lefler ◽  
Atrayee Basu-Mallick ◽  
...  

Background: Cancer therapies are associated with multiple adverse effects, including (but not limited to) cancer-related fatigue (CRF). Fatigue is one of the most common side effects of immune checkpoint inhibitors (ICIs), occurring in up to 25% of patients. Physical activity has been shown to help reduce CRF through modulating the immune system, and may synergistically aid in the anti-tumor effects of ICIs. This review describes the nature and scope of evidence for the effects associated with concurrent physical activity while undergoing ICI therapy. Method: Scoping review methodology was utilized to identify studies, extract data, and collate and summarize results. Results: In literature published from January 2010 through to August 2021, only one human study and three pre-clinical studies met inclusion criteria. Conclusion: Existing evidence supports that physical activity is associated with decreased treatment-related toxicities such as CRF. However, further investigation is warranted. The dearth of clinical studies illustrates the need for more research to address this question, to guide patients and their providers in the application of appropriate physical activity interventions in those patients undergoing ICI.


2021 ◽  
Author(s):  
Duncan Richards ◽  
Helen Millns ◽  
Louise Cookson ◽  
Mary Ann Lukas

Abstract Background: Miridesap depletes circulating serum amyloid P (SAP) and dezamizumab (anti-SAP monoclonal antibody) targets SAP on amyloid deposits, triggering amyloid removal. In a Phase 1, first-in-human study (FIHS), progressive amyloid removal was observed in some patients after ≤3 cycles of miridesap/dezamizumab.Methods: This observational, non-interventional study in patients who received miridesap/dezamizumab during the FIHS (planned follow-up: 5 years) evaluated response to treatment based on routine assessments of disease status and key organ function. In a post hoc analysis, patients responding to treatment in the FIHS during follow-up were identified as responders and further categorized as sustained or declining responders.Results: In the FIHS, 17/23 patients were treatment responders. Of these patients, seven (immunoglobulin light chain [AL], n=6; serum amyloid A, n=1) were considered sustained responders and ten (fibrinogen-a alpha chain [AFib], n=5; AL, n=4; apolipoprotein A-I, n=1) were considered declining responders. We primarily present responder patient-level data for functional, cardiac, laboratory and imaging assessments conducted during the follow-up period, with non-responder data presented as supplementary.Conclusion: No further development of miridesap/dezamizumab is planned in amyloidosis. However, long-term follow-up of these patients may provide insight into whether active removal of amyloid deposits has an impact on disease progression. Trial registration: ClinicalTrials.gov, NCT01777243. Registered 28 January 2013, https://clinicaltrials.gov/ct2/show/study/NCT01777243.


Sign in / Sign up

Export Citation Format

Share Document