scholarly journals Channel space weighted fusion-oriented feature pyramid network for motor imagery EEG signal recognition

Author(s):  
Wenhao Yang
2021 ◽  
Vol 15 ◽  
Author(s):  
Xiongliang Xiao ◽  
Yuee Fang

Brain computer interaction (BCI) based on EEG can help patients with limb dyskinesia to carry out daily life and rehabilitation training. However, due to the low signal-to-noise ratio and large individual differences, EEG feature extraction and classification have the problems of low accuracy and efficiency. To solve this problem, this paper proposes a recognition method of motor imagery EEG signal based on deep convolution network. This method firstly aims at the problem of low quality of EEG signal characteristic data, and uses short-time Fourier transform (STFT) and continuous Morlet wavelet transform (CMWT) to preprocess the collected experimental data sets based on time series characteristics. So as to obtain EEG signals that are distinct and have time-frequency characteristics. And based on the improved CNN network model to efficiently recognize EEG signals, to achieve high-quality EEG feature extraction and classification. Further improve the quality of EEG signal feature acquisition, and ensure the high accuracy and precision of EEG signal recognition. Finally, the proposed method is validated based on the BCI competiton dataset and laboratory measured data. Experimental results show that the accuracy of this method for EEG signal recognition is 0.9324, the precision is 0.9653, and the AUC is 0.9464. It shows good practicality and applicability.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Shidong Lian ◽  
Jialin Xu ◽  
Guokun Zuo ◽  
Xia Wei ◽  
Huilin Zhou

In the research of motor imagery brain-computer interface (MI-BCI), traditional electroencephalogram (EEG) signal recognition algorithms appear to be inefficient in extracting EEG signal features and improving classification accuracy. In this paper, we discuss a solution to this problem based on a novel step-by-step method of feature extraction and pattern classification for multiclass MI-EEG signals. First, the training data from all subjects is merged and enlarged through autoencoder to meet the need for massive amounts of data while reducing the bad effect on signal recognition because of randomness, instability, and individual variability of EEG data. Second, an end-to-end sharing structure with attention-based time-incremental shallow convolution neural network is proposed. Shallow convolution neural network (SCNN) and bidirectional long short-term memory (BiLSTM) network are used to extract frequency-spatial domain features and time-series features of EEG signals, respectively. Then, the attention model is introduced into the feature fusion layer to dynamically weight these extracted temporal-frequency-spatial domain features, which greatly contributes to the reduction of feature redundancy and the improvement of classification accuracy. At last, validation tests using BCI Competition IV 2a data sets show that classification accuracy and kappa coefficient have reached 82.7 ± 5.57% and 0.78 ± 0.074, which can strongly prove its advantages in improving classification accuracy and reducing individual difference among different subjects from the same network.


Sign in / Sign up

Export Citation Format

Share Document