Effects of specific resistance training program on force-velocity relationship, power consumption and work production of quadrics muscle during eccentric actions in elite athletes

2008 ◽  
pp. 29-48
Author(s):  
KOSTANTINOS FLESSAS ◽  
MARIA KOUMPOULA ◽  
DESPINA TSOPANI ◽  
CHARALAMBOS OIKONOMOU
2008 ◽  
Vol 3 (2) ◽  
pp. 164-175 ◽  
Author(s):  
Gertjan Ettema ◽  
Tommy Gløsen ◽  
Roland van den Tillaar

Purpose:The main purpose of this study was to compare the effect of a specific resistance training program (throwing movement with a pulley device) with the effect of regular training (throwing with regular balls) on overarm throwing velocity under various conditions.Methods:The training forms were matched for total training load, ie, impulse generated on the ball or pulley device. Both training groups (resistance training n = 7 and regular training n = 6) consisted of women team handball players, and trained 3 times per week for 8 weeks, according to an assigned training program alongside their normal handball training.Results:An increase in throwing velocity with normal balls after the training period was observed for both groups (P = .014), as well as throwing with heavier balls and throwing like actions in the pulley device. Although the regular training group seemed to improve more (6.1%) in throwing velocity with normal balls than the resistance training group (1.4%), this difference was not statistically significant.Conclusions:These findings indicate that resistance training does not surpass standard throwing training in improvement of overarm throwing velocity.


2018 ◽  
Vol 9 ◽  
Author(s):  
Antonio J. Morales-Artacho ◽  
Paulino Padial ◽  
Amador García-Ramos ◽  
Alejandro Pérez-Castilla ◽  
Javier Argüelles-Cienfuegos ◽  
...  

2016 ◽  
Vol 32 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Caroline Giroux ◽  
Giuseppe Rabita ◽  
Didier Chollet ◽  
Gaël Guilhem

Performance during human movements is highly related to force and velocity muscle capacities. Those capacities are highly developed in elite athletes practicing power-oriented sports. However, it is still unclear whether the balance between their force and velocity-generating capacities constitutes an optimal profile. In this study, we aimed to determine the effect of elite sport background on the force–velocity relationship in the squat jump, and evaluate the level of optimization of these profiles. Ninetyfive elite athletes in cycling, fencing, taekwondo, and athletic sprinting, and 15 control participants performed squat jumps in 7 loading conditions (range: 0%–60% of the maximal load they were able to lift). Theoretical maximal power (Pm), force (F0), and velocity (v0) were determined from the individual force–velocity relationships. Optimal profiles were assessed by calculating the optimal force (F0th) and velocity (v0th). Athletic sprinters and cyclists produced greater force than the other groups (P < .05). F0 was significantly lower than F0th, and v0 was significantly higher than v0th for female fencers and control participants, and for male athletics sprinters, fencers, and taekwondo practitioners (P < .05). Our study shows that the chronic practice of an activity leads to differently balanced force–velocity profiles. Moreover, the differences between measured and optimal force–velocity profiles raise potential sources of performance improvement in elite athletes.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1912
Author(s):  
Scott C. Forbes ◽  
Darren G. Candow ◽  
Sergej M. Ostojic ◽  
Michael D. Roberts ◽  
Philip D. Chilibeck

Creatine supplementation in conjunction with resistance training (RT) augments gains in lean tissue mass and strength in aging adults; however, there is a large amount of heterogeneity between individual studies that may be related to creatine ingestion strategies. Therefore, the purpose of this review was to (1) perform updated meta-analyses comparing creatine vs. placebo (independent of dosage and frequency of ingestion) during a resistance training program on measures of lean tissue mass and strength, (2) perform meta-analyses examining the effects of different creatine dosing strategies (lower: ≤5 g/day and higher: >5 g/day), with and without a creatine-loading phase (≥20 g/day for 5–7 days), and (3) perform meta-analyses determining whether creatine supplementation only on resistance training days influences measures of lean tissue mass and strength. Overall, creatine (independent of dosing strategy) augments lean tissue mass and strength increase from RT vs. placebo. Subanalyses showed that creatine-loading followed by lower-dose creatine (≤5 g/day) increased chest press strength vs. placebo. Higher-dose creatine (>5 g/day), with and without a creatine-loading phase, produced significant gains in leg press strength vs. placebo. However, when studies involving a creatine-loading phase were excluded from the analyses, creatine had no greater effect on chest press or leg press strength vs. placebo. Finally, creatine supplementation only on resistance training days significantly increased measures of lean tissue mass and strength vs. placebo.


Author(s):  
Ana Victoria Costa Freitas ◽  
Inês Amanda Streit ◽  
Josefina Bertoli ◽  
Kayth Andrade Nascimento ◽  
Maria Carolina Oliveira de Sá ◽  
...  

1999 ◽  
Vol 87 (6) ◽  
pp. 2274-2283 ◽  
Author(s):  
Gregory A. Brown ◽  
Matthew D. Vukovich ◽  
Rick L. Sharp ◽  
Tracy A. Reifenrath ◽  
Kerry A. Parsons ◽  
...  

This study examined the effects of acute dehydroepiandrosterone (DHEA) ingestion on serum steroid hormones and the effect of chronic DHEA intake on the adaptations to resistance training. In 10 young men (23 ± 4 yr old), ingestion of 50 mg of DHEA increased serum androstenedione concentrations 150% within 60 min ( P < 0.05) but did not affect serum testosterone and estrogen concentrations. An additional 19 men (23 ± 1 yr old) participated in an 8-wk whole body resistance-training program and ingested DHEA (150 mg/day, n = 9) or placebo ( n = 10) during weeks 1, 2, 4, 5, 7, and 8. Serum androstenedione concentrations were significantly ( P < 0.05) increased in the DHEA-treated group after 2 and 5 wk. Serum concentrations of free and total testosterone, estrone, estradiol, estriol, lipids, and liver transaminases were unaffected by supplementation and training, while strength and lean body mass increased significantly and similarly ( P < 0.05) in the men treated with placebo and DHEA. These results suggest that DHEA ingestion does not enhance serum testosterone concentrations or adaptations associated with resistance training in young men.


Sign in / Sign up

Export Citation Format

Share Document