scholarly journals Field relations, age, and tectonic setting of metamorphic and plutonic rocks in the Creignish Hills – North Mountain area, southwestern Cape Breton Island, Nova Scotia, Canada

2016 ◽  
Vol 52 ◽  
pp. 037 ◽  
Author(s):  
Chris E. White ◽  
Sandra M. Barr ◽  
Donald W. Davis ◽  
David S. Swanton ◽  
John W.F. Ketchum ◽  
...  

 The Creignish Hills and North Mountain areas of southwestern Cape Breton Island consist mostly of Neoproterozoic rocks typical of the Ganderian Bras d’Or terrane. U-Pb ages presented here for detrital zircon in the Blues Brook Formation of the Creignish Hills confirm a depositional age no greater than about 600 Ma. Although it is possible that some components of the formation are much older, similarities in rock types and field relations suggest that this is not the case. It is likely that the equivalent Malagawatch Formation of the North Mountain area, as well as high-grade metasedimentary rocks of the Melford Formation and Chuggin Road complex in the Creignish Hills and Lime Hill gneiss complex in the North Mountain area, represent the same or stratigraphically equivalent units as the Blues Brook Formation. The minimum ages of all of these units are constrained by cross-cutting syn- and post-tectonic plutons with ages mostly between 565 and 550 Ma, indicating that sediments were deposited, regionally metamorphosed, deformed, and intruded by plutons in less than 40–50 million years. The assemblage of pelitic, psammitic, and carbonate rocks indicates that a passive margin in a tropical climate was quickly changed to an active Andean-type continental margin in which voluminous calcalkaline dioritic to granitic plutons were emplaced. This sedimentary and tectonic history is characteristic of the Bras d’Or terrane and is shared by its likely correlative, the Brookville terrane in southern New Brunswick. 

2019 ◽  
Vol 56 (8) ◽  
pp. 829-847 ◽  
Author(s):  
D. van Rooyen ◽  
S.M. Barr ◽  
C.E. White ◽  
M.A. Hamilton

The northern Appalachian orogen preserves evidence of a complex history of amalgamation of terranes with both Laurentian and Gondwanan affinities. The Ganderian Bras d’Or terrane of central Cape Breton Island is not well represented elsewhere in the orogen and its relationship to other Ganderian terranes is enigmatic, particularly with respect to its pre-Neoproterozoic history. The Boisdale Hills and Kellys Mountain areas contain the oldest metamorphic rocks in the Bras d’Or terrane. Quartzite units in the Boisdale Hills have detrital zircon populations with ages ranging from 3.2 to ca. 1 Ga. Paragneiss units from the Kellys Mountain area contain Meso- to Neoproterozoic detrital zircons, in which the youngest grains indicate that the maximum depositional age is <600 Ma. The detrital zircon populations of rocks from both areas are consistent with Gondwanan provenance for the protoliths, most likely the Amazonian craton. New U–Pb dates for subduction-related dioritic to granodioritic plutons in the Boisdale Hills yielded ages of 560 to ca. 540 Ma. Sedimentary, bimodal volcanic and plutonic rocks from the Bourinot belt in the Boisdale Hills and related plutons in the Kellys Mountain area have ages of ca. 510–490 Ma and are interpreted to have formed during extension related to separation of Ganderia from Gondwana. The southeastern Bras d’Or terrane preserves rocks formed in Pan-African subduction zones on a former passive margin of Gondwana as well as rocks formed during the initial stages of rifting of Ganderia from Gondwana and the subsequent opening of the Rheic Ocean.


1991 ◽  
Vol 28 (11) ◽  
pp. 1769-1779 ◽  
Author(s):  
Sandra M. Barr ◽  
Rebecca A. Jamieson

Interlayered mafic and felsic metavolcanic rocks and metasedimentary rocks of Ordovician to Silurian age are characteristic of the Aspy terrane of northwestern Cape Breton Island. These rocks were affected by medium- to high-grade metamorphism and were intruded by synkinematic granitoid orthogneisses during Late Silurian to Early Devonian times. They were intruded by posttectonic Devonian granitic plutons and experienced rapid Devonian decompression and cooling. The chemical characteristics of the mafic metavolcanic rocks indicate that they are tholeiites formed in a volcanic-arc setting. The volcanic rocks of the Aspy terrane differ from many other Silurian and Silurian–Devonian successions in Atlantic Canada, which have chemical and stratigraphic characteristics of volcanic rocks formed in extensional within-plate settings, and are somewhat younger than the Aspy terrane sequences. Aspy terrane units are most similar to Ordovician–Silurian volcanic and metamorphic units in southwestern Newfoundland, including the La Poile Group and the Port aux Basques gneiss. Together with other occurrences of Late Ordovician to Early Silurian volcanic-arc units, they indicate that subduction-related compressional tectonics continued into the Silurian in parts of the northern Appalachian Orogen. The complex Late Silurian – Devonian tectonic history of the Aspy terrane may reflect collision with the southeastern edge of a Grenvillian crustal promentory.


1984 ◽  
Vol 21 (7) ◽  
pp. 762-774 ◽  
Author(s):  
Marie-Claude Blanchard ◽  
Rebecca A. Jamieson ◽  
Elizabeth B. More

The Fisset Brook Formation of western Cape Breton Island and its equivalents at MacMillan Mountain and the north Baddeck River are examples of Late Devonian and Early Carboniferous volcanic sequences associated with the formation of post-Acadian successor basins in the northeastern Appalachians. They consist of bimodal basalt–rhyolite suites interbedded with alluvial fan, lacustrine, and rare fluvial sediments. The earliest volcanic products are rhyolites and somewhat evolved basalts associated with coarse sediments, followed by tholeiitic to transitional basalt flows interlayered with lacustrine-type deposits. Geochemical studies on the Fisset Brook Formation indicate extensive remobilization of alkalies, Ca, Rb, and Sr, making these elements inappropriate for determining tectonic setting or magmatic affinity. Use of less mobile elements (Ti, Nb, Y, and Zr) suggests that the basalts are tholeiitic and that the apparent alkalinity of the type section lavas is a result of alteration. We conclude that volcanism in western Cape Breton Island started at MacMillan Mountain and migrated westwards, probably towards the centre of the deepening Magdalen Basin.


1998 ◽  
Vol 35 (11) ◽  
pp. 1252-1270 ◽  
Author(s):  
S M Barr ◽  
R P Raeside ◽  
C E White

Geological correlations between Cape Breton Island and Newfoundland are apparent both in surface geology and at deeper crustal levels, based on similarities in Sm-Nd isotopic signatures. The Mira terrane of southeastern Cape Breton Island is part of the Avalon terrane sensu stricto and is composed of Neoproterozoic volcanic-sedimentary-plutonic belts and overlying Cambrian rocks directly comparable to those in the western part of the Newfoundland Avalon terrane. The Bras d'Or terrane is also mainly of Neoproterozoic age, but shows lithological and isotopic contrasts with the Mira terrane. Small areas of similar Neoproterozoic rocks occur in southern Newfoundland and to the north as inliers in the Exploits terrane. The Bras d'Or terrane and similar rocks in Newfoundland are interpreted to represent a peri-Gondwanan terrane where rocks of the Gander terrane were later formed. Hence this area is part of the Central Mobile Belt and distinct from Avalon terrane sensu stricto. The Aspy terrane is a complex area that may include fragments of Bras d'Or crust and components of the Gander, Exploits, and possibly Notre Dame terranes of Newfoundland. It formed by subduction and back-arc basin opening and closure during the Silurian to Early Devonian. The Blair River Inlier is a fragment of Grenvillian rocks, similar to those in the Grenvillian inliers in the Humber zone of western Newfoundland in terms of age, rock types, and isotopic composition. Silurian and Devonian promontory-promontory collision resulted in juxtaposition and stacking of these elements in Cape Breton Island, as in the Hermitage Flexure - Port aux Basques area of Newfoundland. Because the lower crust under Bras d'Or - Gander - Aspy terranes seems distinct from that under Avalon terrane sensu stricto, it is preferable to use the term peri-Gondwanan rather than Avalonian to refer to these areas.


1986 ◽  
Vol 23 (11) ◽  
pp. 1686-1699 ◽  
Author(s):  
Sandra M. Barr ◽  
Alan S. Macdonald ◽  
John Blenkinsop

The Cheticamp pluton consists of biotite granodiorite (locally megacrystic) in the north and museovite–biotite granodiorite in the south, in probable faulted contact. These two rock types, especially the biotite granodiorite, show a broad range in modal and chemical compositions. They are interpreted to be cogenetic, with the museovite–biotite grandiorite derived from the biotite granodiorite by crystal fractionation involving mafic minerals, plagioclase, and sphene. The overall peraluminous composition of the suite resulted from the fractionation process, probably enhanced by alteration, rather than from derivation from peraluminous source rocks.A seven-point, whole-rock, Rb–Sr isochron indicates an age of 525 ± 40 Ma. The pluton intruded dioritic rocks and quartzo-feldspathic gneisses, thus indicating Precambrian ages for these units. It probably also postdates the Western Highlands volcanic–sedimentary complex, a major undated stratigraphic unit in the Cape Breton Highlands. Although the age overlaps the range of Rb–Sr ages from plutons of the Avalon Terrane of the Appalachian orogen, the geological setting of the Cheticamp pluton differs from that of true Avalonian plutons, such as those in southeastern Cape Breton Island.


2002 ◽  
Vol 26 (1) ◽  
pp. 29-44

The supracrustal rocks of the Loch Maree Group (LMG) consist of a variety of metasedimentary rocks interbanded with amphibolites considered to be of volcanic origin. The metasedimentary rocks fall into two distinct categories: a) schistose semipelites, which form the main part of the outcrop; and b) narrow bands of different rock types, including siliceous, carbonate-bearing and graphitic rocks, occurring in close association with the metavolcanic amphibolites. Both the compositional banding and the dominant foliation throughout the LMG outcrop are steeply dipping and trend uniformly NW-SE.The sequence of lithotectonic rock units from SW to NE (structurally upwards) is shown in the cross-section (Fig. 4.1) and briefly described in Table 4.1. The original names of the lithotectonic units (Park 1964) are retained for convenience. The depositional age of the LMG is presumed to be around 2.0 Ga, based on a Sm-Nd model age (O'Nions et al. 1983) and detrital zircon dates (Whitehouse et al. 1991 a, 2001) (see below).Semipelites form several distinct NW-trending belts separated by amphibolite sheets. The most prominent belt comprises the Flowerdale schist unit (see map) which occupies a broad belt about 700 m in width, extending in a northwesterly direction across the Gairloch district, but ending north of the mapped area, where the two amphibolites from either side converge, 3.5 km north of the Gairloch-Poolewe road. This belt is offset in the centre of the area by the Flowerdale fault, and has a total exposed length of about 15 km. Southwest of this belt is the


2005 ◽  
Vol 69 (1) ◽  
pp. 53-76 ◽  
Author(s):  
U. Bağci ◽  
O. Parlak ◽  
V. Höck

AbstractThe late Cretaceous Kızıldağ ophiolite forms one of the best exposures of oceanic lithospheric remnants of southern Neotethys to the north of the Arabian promontory in Turkey. The ultramafic to mafic cumulate rocks, displaying variable thickness (ranging from 165 to 700 m), are ductiley deformed, possibly in response to syn-magmatic extension during sea-floor spreading and characterized by wehrlite, olivine gabbro, olivine gabbronorite and gabbro. The gabbroic cumulates have an intrusive contact with the wehrlitic cumulates in some places. The crystallization order of the cumulus and intercumulus phases is olivine (Fo86–77)± chromian spinel, clinopyroxene (Mg#92–76), plagio-clase(An95–83), orthopyroxene(Mg#87–79). The olivine, clinopyroxene, orthopyroxene and plagioclase in ultramafic and mafic cumulate rocks seem to have similar compositional range. This suggests that these rocks cannot represent a simple crystal line of descent. Instead the overlapping ranges in mineral compositions in different rock types suggest multiple magma generation during crustal accretion for the Kızıldağ ophiolite. The presence of high Mg# of olivine, clinopyroxene, orthopyroxene, and the absence of Ca-rich plagioclase as an early fractionating phase co-precipitating with forsteritic olivine, suggest that the Kızıldağ plutonic suite is not likely to have originated in a mid-ocean ridge environment. Instead the whole-rock and mineral chemistry of the cumulates indicates their derivation from an island arc tholeiitic (IAT) magma. All the evidence indicates that the Kızıldağ ophiolite formed along a slow-spreading centre in a fore-arc region of a suprasubduction zone tectonic setting.


2020 ◽  
Vol 57 (9) ◽  
pp. 1011-1029
Author(s):  
Gabriel Sombini dos Santos ◽  
Sandra M. Barr ◽  
Chris E. White ◽  
Deanne van Rooyen

The Margaree pluton extends for >40 km along the axis of the Ganderian Aspy terrane of northern Cape Breton Island, Nova Scotia. The pluton consists mainly of coarse-grained megacrystic syenogranite, intruded by small bodies of medium-grained equigranular syenogranite and microgranite porphyry, all locally displaying rapakivi texture. The three rock types have similar U–Pb (zircon) ages of 363 ± 1.6, 364.8 ± 1.6, and 365.5 ± 3.3 Ma, respectively, consistent with field and petrological evidence that they are coeval and comagmatic. The rare earth elements display parallel trends characterized by enrichment in the light rare earth elements, flat heavy rare earth elements, moderate negative Eu anomalies, and, in some cases, positive Ce anomalies. The megacrystic and rapakivi textures are attributed to thermal perturbation in the magma chamber caused by the mixing of mafic and felsic magma, even though direct evidence of the mafic magma is mainly lacking at the current level of exposure. Magma evolution was controlled by fractionation of quartz, K-feldspar, and Na-rich plagioclase in molar proportions of 0.75:0.12:0.13. The chemical and isotopic (Sm–Nd) signature of the Margaree pluton is consistent with the melting of preexisting continental crust that was enriched in heat-producing elements, likely assisted by intrusion of mantle-derived mafic magma during Late Devonian regional extension. The proposed model involving magma mixing at shallow crustal levels in a cryptic silicic-mafic magma chamber during post-Acadian extension is consistent with models for other, better exposed occurrences of rapakivi granite in the northern Appalachian orogen.


2019 ◽  
Vol 11 (10) ◽  
pp. 2821 ◽  
Author(s):  
Yue Tian ◽  
Junfeng Miao

The spatiotemporal structure and evolution of the thermally-induced mountain-plain breeze circulation in the Longquan Mountain, eastern Chengdu, are studied by the WRF-ARW model based on a two-day case. Turbulence characteristics are also examined to better understand the local circulation of the area. Simulation results show that the 2 m temperature distribution of the plain and mountain areas is peculiar due to the occurrence of the temperature inversion. The plain and mountain breezes can be predicted explicitly by the model, and the consequent circulations are coupled with other factors such as turbulent movement and vertically propagating mountain waves. Owing to this unique terrain feature, the north portion of the mountain demonstrates more evident mountain and plain breezes compared to the south and middle portions. Stronger turbulences are formed over the mountain area compared to the plain area. Vertical cross-sections of turbulent heat, moisture and momentum fluxes show that turbulent transport plays an important role in the development and elimination of mountain-plain breeze circulation.


Sign in / Sign up

Export Citation Format

Share Document