The effect of fasting and diet on fecal shedding of Escherichia coli O157:H7 by cattle

2000 ◽  
Vol 80 (4) ◽  
pp. 741-744 ◽  
Author(s):  
S. J. Buchko ◽  
R. A. Holley ◽  
W. O. Olson ◽  
V. P. J. Gannon ◽  
D. M. Veira

Cattle naturally infected with Escherichia coli O157:H7 were used to assess the effects of diet and feed withdrawal on the fecal shedding of E. coli O157:H7. Animals were fed an 80% concentrate diet (80% barley and 20% alfalfa silage), fasted for 48 h, fed a 100% forage diet (alfalfa silage), fasted for 48 h, and subsequently re-fed 100% forage (alfalfa silage). There were no differences in the numbers of animals positive for the shedding of E. coli O157:H7 when fed an 80% barley diet or an all-forage diet (P > 0.05) or during the fasting periods following each diet (P > 0.05). Upon re-feeding an all-forage diet following a 48-h fast, animals positive for E. coli O157:H7 shedding increased (P < 0.05), with 42.5% of the animals shedding the pathogen after 5 d. Re-feeding 100% forage following fasting appeared to have increased the number of animals shedding E. coli O157:H7 in their feces, which may have been influenced by diet in addition to fasting. Key words: Escherichia coli O157:H7, fasting, diet, cattle, fecal shedding

1999 ◽  
Vol 62 (6) ◽  
pp. 574-579 ◽  
Author(s):  
BARRY G. HARMON ◽  
CATHY A. BROWN ◽  
SUZANA TKALCIC ◽  
P. O. E. MUELLER ◽  
ANDREW PARKS ◽  
...  

Nine weaned calves aged from 8 to 12 weeks were fitted with rumen cannulas and were inoculated by cannula with 1010 CFU of a five-strain mixture of nalidixic acid-resistant Escherichia coli O157:H7. Six calves were fasted for 48 h on days 15 and 16 and days 22 and 23 after inoculation. Samples of rumen contents and feces were obtained daily to enumerate E. coli O157:H7 populations and to determine rumen volatile fatty acid (VFA) concentrations and rumen pH. Fasting resulted in a marked decrease in rumen VFA concentrations from a mean of 135 mmol/liter before the fast to a mean of 35 mmol/liter during the second day of the fast. However, there was no correlation between daily VFA concentration and daily rumen or fecal numbers of E. coli O157:H7 in any of the calves. Fasting generally had no significant effect on the rumen or fecal numbers of E. coli O157:H7. The exception was a single fasted calf that experienced a 3-log10 CFU/g increase in fecal shedding during and after the first fast. Despite the consistent changes in VFA concentrations in fasted calves, the fluctuations in rumen numbers of E. coli O157:H7 in the rumen of fasted calves were minimal. At the end of the experiment, E. coli O157:H7 was detected in either the rumen or omasum in two of three control calves at necropsy and in either the rumen or reticulum in five of six fasted calves. E. coli O157:H7 was detected in the colon in two of three control calves and in six of six fasted calves at necropsy. These results suggest that in cattle already shedding E. coli O157:H7, feed withdrawal and the associated changes in rumen pH and VFA concentrations have little effect on fecal shedding and rumen proliferation of E. coli O157:H7.


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2004 ◽  
Vol 67 (4) ◽  
pp. 672-678 ◽  
Author(s):  
S. J. BACH ◽  
T. A. McALLISTER ◽  
G. J. MEARS ◽  
K. S. SCHWARTZKOPF-GENSWEIN

The effects of weaning and transport on fecal shedding of Escherichia coli and on E. coli O157:H7 were investigated using 80 Angus and 94 Charolais range steer calves blocked by breed and assigned to four treatments. The calves were or were not preconditioned before transport on commercial cattle liner to the feedlot via long (15 h) or short (3 h) hauling duration, yielding preconditioned long haul (P-L; n = 44), preconditioned short haul (P-S; n = 44), nonpreconditioned long haul (NP-L; n = 43), and nonpreconditioned short haul (NP-S; n = 43). Preconditioned calves were vaccinated and weaned 29 and 13 days, respectively, before transport. Nonpreconditioned calves were weaned 1 day before long or short hauling, penned for 24 h and hauled again for 2 h, and vaccinated on arrival at the feedlot. Fecal samples were collected from calves while on pasture, at weaning, at loading for transport, on arrival at the feedlot, twice in the first week, and on days 7, 14, 21, and 28 for enumeration of total E. coli (biotype 1) and detection of E. coli O157:H7. No calves were positive for E. coli O157:H7 before transport. Following transport, more (P &lt; 0.005) NP-L calves (6 of 43) tested positive for E. coli O157:H7 than did P-L (1 of 44), NP-S (1 of 43), or P-S (0 of 44) calves, and on days 0, 1, 7, and 21, their levels of shedding of E. coli were higher (P &lt; 0.005). The calves' susceptibility to infection from the environment (possibly the holding facilities or feedlot pens) was likely elevated by the stresses of weaning, transport, and relocation. Lack of preconditioning and long periods of transport (NP-L) increased fecal shedding of E. coli and E. coli O157:H7. Preconditioning may serve to reduce E. coli O157:H7 shedding by range calves on arrival at the feedlot.


2006 ◽  
Vol 69 (5) ◽  
pp. 1154-1158 ◽  
Author(s):  
MARGARET L. KHAITSA ◽  
MARC L. BAUER ◽  
GREGORY P. LARDY ◽  
DAWN K. DOETKOTT ◽  
REDEMPTA B. KEGODE ◽  
...  

Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157: H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P &lt; 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.


2004 ◽  
Vol 70 (9) ◽  
pp. 5336-5342 ◽  
Author(s):  
M. J. Van Baale ◽  
J. M. Sargeant ◽  
D. P. Gnad ◽  
B. M. DeBey ◽  
K. F. Lechtenberg ◽  
...  

ABSTRACT Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (1010 CFU/animal) made resistant to nalidixic acid (Nalr). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nalr E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nalr E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.


1991 ◽  
Vol 37 (8) ◽  
pp. 650-653 ◽  
Author(s):  
Joan I. Speirs ◽  
Mumtaz Akhtar

Sandwich enzyme-linked immunosorbent assays (ELISAs) were developed to detect Escherichia coli cytotoxins. Wells were coated with monoclonal antibodies from hybridomas 13C4 and (or) 11E10, and biotin conjugates of these antibodies were used for detecting verotoxin 1 and Shiga-like toxin II, respectively. Sensitivities were about 100 and 200 cytotoxic doses, respectively. Verotoxin 2 was detected by ELISA with monoclonal antibody 11E10, but at a sensitivity of only about 4000 cytotoxic doses. ELISA results of polymyxin-treated cell extracts from cultures of 67 E. coli strains were in agreement with Vero cell assay as regards the presence and type of toxin. Key words: Escherichia coli, cytotoxin, ELISA.


2008 ◽  
Vol 88 (4) ◽  
pp. 581-584 ◽  
Author(s):  
Danica Baines ◽  
Stephanie Erb ◽  
Tim McAllister

Cattle act as the main reservoir for enterohemorrhagic Escherichia coli O157:H7, a bacterium that causes serious human disease outbreaks. It is currently not clear which bacterial or animal factors contribute to E. coli O157:H7 colonization in cattle. We recently identified mucosal hemorrhages in the jejunum, ileum and colon of persistent shedding cattle that were associated with E. coli O157:H7 colonization. This suggested that E. coli O157:H7-secreted cytotoxins may be involved in the E. coli O157:H7 colonization process. Further studies confirmed that E. coli O157:H7-secreted cytotoxins were toxic to cattle enterocytes and enhanced E. coli O157:H7 colonization of intestinal tissues. The current study examined the contribution of Stx2 to the earlier reported E. coli O157:H7- associated mucosal damage and secreted cytotoxin activity. Stx2 was not cytotoxic to enterocytes, but did enhance E. coli O157:H7 adherence to intestinal tissues in cattle. This is the first report of an E. coli O157:H7 virulence factor that can directly influence the E. coli O157:H7 colonization process in cattle. Key words: Stx2, Escherichia coli O157:H7, cattle, intestine, colonization


2003 ◽  
Vol 66 (5) ◽  
pp. 748-754 ◽  
Author(s):  
M. M. BRASHEARS ◽  
M. L. GALYEAN ◽  
G. H. LONERAGAN ◽  
J. E. MANN ◽  
K. KILLINGER-MANN

Fecal shedding of Escherichia coli O157:H7, the prevalence of Escherichia coli O157:H7 in pens and on carcasses and hides, and cattle performance as a result of daily dietary supplementation with Lactobacillus-based direct-fed microbials (DFMs) were evaluated in a feeding trial involving 180 beef steers. Steers were evaluated for shedding of E. coli O157:H7 by an immunomagnetic separation technique on arrival at the feedlot, just before treatment with the DFMs, and every 14 days thereafter until slaughter. Composite pen fecal samples were collected every 14 days (alternating weeks with animal testing), and prevalence on hides and carcasses at slaughter was also evaluated. Feedlot performance (body weight gain and feed intake) was measured for the period during which the DFMs were fed. Gain efficiency was calculated as the ratio of weight gain to feed intake. Lactobacillus acidophilus NPC 747 decreased (P &lt; 0.01) the shedding of E. coli O157:H7 in the feces of individual cattle during the feeding period. E. coli O157:H7 was approximately twice as likely to be detected in control animal samples as in samples from animals receiving L. acidophilus NPC 747. In addition, DFM supplementation decreased (P &lt; 0.05) the number of E. coli O157:H7–positive hide samples at harvest and the number of pens testing positive for the pathogen. Body weight gains (on a live or carcass basis) and feed intakes during the DFM supplementation period did not differ among treatments. Gain efficiencies on a live-weight basis did not differ among treatments, but carcass-based gain/feed ratios tended (P &lt; 0.06) to be better for animals receiving the two DFM treatments than for control animals. The results of this study suggest that the feeding of a Lactobacillus-based DFM to cattle will decrease, but not eliminate, fecal shedding of E. coli O157:H7, as well as contamination on hides, without detrimental effects on performance.


2011 ◽  
Vol 74 (6) ◽  
pp. 912-918 ◽  
Author(s):  
K. L. SWYERS ◽  
B. A. CARLSON ◽  
K. K. NIGHTINGALE ◽  
K. E. BELK ◽  
S. L. ARCHIBEQUE

Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P &lt; 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P &gt; 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight XbaI PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.


2008 ◽  
Vol 71 (3) ◽  
pp. 539-544 ◽  
Author(s):  
EBOT S. TABE ◽  
JAMES OLOYA ◽  
DAWN K. DOETKOTT ◽  
MARC L. BAUER ◽  
PENELOPE S. GIBBS ◽  
...  

The effect of direct-fed microbials (DFM) on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle was evaluated in a clinical trial involving 138 feedlot steers. Following standard laboratory methods, fecal samples collected from steers were evaluated for change in the detectable levels of E. coli O157:H7 and Salmonella shed in feces after DFM treatment. Sampling of steers was carried out every 3 weeks for 84 days. A significant reduction (32%) in fecal shedding of E. coli O157:H7 (P &lt; 0.001), but not Salmonella (P = 0.24), was observed among the treatment steers compared with the control group during finishing. The probability of recovery of E. coli O157:H7 from the feces of treated and control steers was 34.0 and 66.0%, respectively. Steers placed on DFM supplement were almost three times less likely to shed E. coli O157:H7 (odds ratio, 0.36; 95% confidence interval, 0.25 to 0.53; P &lt; 0.001) in their feces as opposed to their control counterparts. The probability of recovery of Salmonella from the feces of the control (14.0%) and the treated (11.3%) steers was similar. However, the DFM significantly reduced probability of new infections with Salmonella among DFM-treated cattle compared with controls (nontreated ones). It appears that DFM as applied in our study are capable of significantly reducing fecal shedding of E. coli O157:H7 in naturally infected cattle but not Salmonella. The factors responsible for the observed difference in the effects of DFM on E. coli O157:H7 and Salmonella warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document