BURNING CROP RESIDUES: EFFECT ON SELECTED SOIL CHARACTERISTICS AND LONG-TERM WHEAT YIELDS

1979 ◽  
Vol 59 (2) ◽  
pp. 79-86 ◽  
Author(s):  
J. F. DORMAAR ◽  
U. J. PITTMAN ◽  
E. D. SPRATT

Soils from a long-term spring wheat — spring wheat — fallow crop rotation study at Lethbridge, Alberta, and two similar crop rotations at Indian Head, Saskatchewan, were analyzed for pH, organic C, total N, chelating resin-extractable C, polysaccharides, water-stable aggregates, NH4-N, NO3-N, and available P. Several agronomic practices, including straw burning, have been tested in the rotations. At Lethbridge, soil samples from the straw-burning treatment showed a decrease (P < 0.05) in soil polysaccharides and in the percentage of water-stable aggregates. At Indian Head, where straw was burned, organic C and polysaccharide content of all soils were decreased (P < 0.05), and NH4-N and available P were decreased (P < 0.05) in some soils. The other soil characteristics examined were not affected by burning of the previous crop residue or, as with available P, reacted differently at different sites. Long-term wheat yields tended to be greater in all experiments when straw was not burned. On the basis of the results obtained, burning of crop residues on a long-term basis must be discouraged.

1998 ◽  
Vol 78 (3) ◽  
pp. 551-562 ◽  
Author(s):  
G. Roloff ◽  
R. de jong ◽  
C. A. Campbell ◽  
R. P. Zentner ◽  
V. M. Benson

The Environmental Policy Integrated Climate (EPIC) model is an important support tool for environmental management. Previous tests of the model have determined that it is suitable for long-term yield estimation, but it is less precise in assessing annual yield variability. To determine the reasons for the discrepancies between estimated and measured yields, we tested the ability of EPIC version 5300 to predict soil water and soil nitrogen dynamics, using data from a long-term spring wheat (Triticum aestivum L.) rotation experiment in the semiarid prairie region of Canada. Potential evapotranspiration (PET) estimates varied among methods tested: Priestley-Taylor and Penman-Monteith methods resulted in PET means that were about twice those obtained with the Hargreaves and Baier-Robertson methods. The higher PET means were associated with an excessive estimation of net radiation. We used the Baier-Robertson method to generate the other estimates reported herein. EPIC generally overestimated total soil water, but it still allowed clear differentiation among rotation phases and times of the year, and provided adequate estimates of water during the critical shot-blade stage. Water estimates by soil layer were also generally overpredicted, especially at depths from 0.15 to 0.60 m, but we were able to differentiate among rotation phases and times of the year. Precision of these latter estimates was generally low, accounting at most for 27% of the variability, and varied by soil layer, rotation phase and time of the year. Nitrate-N estimates tended to be lower than measured values, especially at depths below 0.3 m and during vegetative growth phases. However, the estimates also allowed us to distinguish among the rotation phases and times of the year. Total N and organic C were satisfactorily estimated by EPIC. In general, EPIC provided adequate long-term estimates of the environmental quality indicators tested. Key words: Environmental quality, environmental modelling, sustainability, spring wheat, fallow, potential evapotranspiration methods


1984 ◽  
Vol 64 (4) ◽  
pp. 647-656 ◽  
Author(s):  
J. F. DORMAAR

Two non-replicated, unfertilized, dryland grain rotations—continuous wheat and wheat-fallow — were established in 1912 on a Dark Brown Chernozemic soil in southern Alberta. The effect of long-term cropping on the monosaccharide distribution in the hydrolysates of the water-stable aggregates was assessed. Although all the hydrolysates of the aggregates had the same suite of monosaccharides, the relative proportions changed with cultivation. The eight monosaccharides identified represented between 92 and 96% of the total GC detector response. The monosaccharide C of aggregate organic C for the native prairie varied from 6.9 to 7.6%, while for the continuous wheat and the wheat and fallow of the wheat-fallow rotation it varied from 3.6 to 5.5%, from 1.8 to 5.1%, and from 1.6 to 6.7%, respectively; the higher percentages were associated with the larger aggregate fractions. Except for galactose, the average relative proportions of the monosaccharides identified in the hydrolysates of the water-stable aggregates were not much different from those reported in the literature for the hydrolysates of whole soils. Key words: Monosaccharides, aggregate fractions, water-stable aggregates, capillary gas chromatography, long-term rotation


2021 ◽  
Author(s):  
Carlos Romero ◽  
Xiying Hao ◽  
Paul Hazendonk ◽  
Timothy Schwinghamer ◽  
Martin Chantigny ◽  
...  

&lt;p&gt;Managing croplands for increased storage of soil organic matter (SOM) is a critical step towards developing resilient farming systems in a changing climate. We examined SOM dynamics in a wheat (Triticum durum L.) &amp;#8211; maize (Zea mays L.) irrigated bed planting system established near Ciudad Obreg&amp;#243;n, Sonora, Mexico. Soil samples (0 &amp;#8211; 15 cm) were collected from conventionally tilled raised beds (CTB) with all crop residues incorporated (CTB-I) and permanent raised beds (PB) with crop residues burned (PB-B), removed (PB-R), partly retained (PB-P) or fully retained (PB-K) receiving 0, 150 or 300 kg N ha&lt;sup&gt;-1&lt;/sup&gt;, and analyzed for organic C (OC), total N (TN) and &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C in whole-soil, light fraction (LF) and coarse- (sand) and fine- (silt and clay) mineral-associated organic matter (MAOM). Results indicated that PB-K and PB-B increased soil OC (P &lt; 0.05) in whole-soil relative to CTB-I, mainly through increases in sand- and silt-size MAOM, respectively. Similarly, N-fertilization increased soil OC and TN contents in whole-soil, coarse-MAOM, and fine-MAOM, but not in the LF pool. Soil &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C was higher (P &lt; 0.05) in PB-K (-20.18&amp;#8240;) relative to PB-B (-20.67&amp;#8240;), possibly due to the stabilization of partly decomposed maize-C in silt- and clay-size MAOM. The composition of SOM surveyed by CPMAS &lt;sup&gt;13&lt;/sup&gt;C NMR was not affected by tillage-residue management and roughly consisted of 35% O-alkyl-C, 31% alkyl-C, 24% aromatic-C, and 10% carboxyl-C. Our results indicate that long-term PB-K and PB-B adoption increased surface soil OC contents relative to CTB-I, even though pathways of SOM stabilization differed between systems. Under PB-K, accumulation of fine-MAOM was mostly related to straw-C inputs, whereas in PB-B it was closely associated with black-C precursors. Fine-MAOM appeared responsive to crop residue management and should be therefore considered when analyzing mechanisms of SOM stabilization in irrigated croplands.&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.5f4bda4b7cff54512830161/sdaolpUECMynit/12UGE&amp;app=m&amp;a=0&amp;c=e41c23ac3d107ae401152ab2ecf4553d&amp;ct=x&amp;pn=gepj.elif&amp;d=1&quot; alt=&quot;&quot;&gt;&lt;/p&gt;


2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


2019 ◽  
Vol 99 (3) ◽  
pp. 334-344 ◽  
Author(s):  
J.J. Miller ◽  
M.L. Owen ◽  
B.H. Ellert ◽  
X.M. Yang ◽  
C.F. Drury ◽  
...  

Crop residues and N fertilizer under no-till may increase soil water repellency (SWR) and soil hydrophobicity, but few studies have examined these two treatment factors and their interaction. A laboratory study was conducted using a long-term (since 1999) field experiment on a clay loam soil to determine the effect of three crop residues and two N fertilizer levels on SWR and soil hydrophobicity under no-till within the Dark Brown soil zone of the semi-arid Canadian prairies. The three residue treatments were residues removed from soil (Rx0), residues returned to soil (Rx1), and residues supplemented to soil (Rx2). The two fertilizer N treatments were 0 (N0) and 45 kg N ha−1 (N1). Surface (0–10 cm) soil samples were taken in the spring of 2017 after 17 yr. Laboratory measurements were conducted on air-dried and sieved (<2 mm) soil to determine SWR using the repellency index method (RI), soil organic C, hydrophobic CH and hydrophilic CO functional groups, and soil hydrophobicity (CH/CO ratio). Mean RI values ranged from 2.19 to 2.75, indicating subcritical (RI > 1.95) SWR. Similar (P > 0.05) RI values were found for the three residue and two N fertilizer treatments, but the trend was for greater RI with increased residue addition (by 12%–26%) and N fertilizer (by 8%). Soil hydrophobicity was significantly greater by 47%–82% for straw returned or supplemented than straw removed treatments, and by 33% for fertilized than unfertilized treatments. Overall, greater residues and N fertilizer had no effect on SWR, but significantly increased soil hydrophobicity.


2014 ◽  
Vol 60 (No. 4) ◽  
pp. 141-145 ◽  
Author(s):  
A. Woźniak ◽  
M. Gos

The objective of this study was to analyze the effect of tillage systems and nitrogen fertilization on the grain yield and quality of spring wheat and on selected chemical and biological properties of soil. The first order factor was the tillage system: (1) conventional (CT) &ndash; shallow ploughing and harrowing after harvest of the previous crop, and pre-winter ploughing; (2) reduced (RT) &ndash; only a cultivator after harvest of the previous crop, and (3) no-tillage (NT) &ndash; only Roundup 360 SL herbicide (a.s. glyphosate) after harvest of the previous crop. The second order factor was nitrogen dose: (1) 90 kg N/ha and (2) 150 kg N/ha. Higher yields were demonstrated for spring wheat sown in CT and RT systems, compared to the NT system. In addition, grain yield was increased by a nitrogen dose of&nbsp;150 kg/ha, compared to 90 kg/ha. Contents of protein and wet gluten in the grain were also increased by the higher nitrogen dose. The RT and NT systems were observed to increase the content of organic C, total N and available phosphorus in the soil, compared to the CT system. They also increased the number and mass of earthworms in the soil, compared to the CT system.


1986 ◽  
Vol 8 (1) ◽  
pp. 11 ◽  
Author(s):  
RB Hacker

An earthy sand supporting a mulga shrubland community in the arid winter rainfall zone in Western Australia is characterized in terms of its chemical and physical properties. In this study, changes in these properties with overgrazing were investigated. Nutrient levels were low in relation to some soils supporting mulga communities elsewhere in Australia. Marked accumulations of total N, organic C and exchangeable Ca occurred in the hummocks of wind blown material surrounding surface obstructions. Improved water relationships are probably responsible for the abundance of ephemeral growth on such areas, and for their subsequent chemical enrichment. Changes in chemical properties with depth were evident for pH, total N, organic C, available P and exchangeable Mg with values decreasing from the 0-2 cm layer to the 2-10 cm layer in all cases. Chemical changes associated with overgrazing were restricted to the 0-2 cm layer. Some trends towards lower levels of organic C, total N, and available P could be distinguished, particularly for organic C and total N in hummock surfaces, but chemical parameters generally did not provide a sensitive measure of grazing impact. Sorptivity varied between the sandy and crusted phases of the soil mosaic and was reduced on sites in very poor condition. Sorptivity changes under grazing were apparently mediated partly by changes in the structural properties of the soil crust. There was no significant effect of overgrazing on either the bulk density of the surface (sub-crust) soil or on summer surface temperatures.


2014 ◽  
Vol 94 (3) ◽  
pp. 389-402 ◽  
Author(s):  
J. J. Miller ◽  
B. W. Beasley ◽  
C. F. Drury ◽  
X. Hao ◽  
F. J. Larney

Miller, J. J., Beasley, B. W., Drury, C. F., Hao, X. and Larney, F. J. 2014. Soil properties following long-term application of stockpiled feedlot manure containing straw or wood-chip bedding under barley silage production. Can. J. Soil Sci. 94: 389–402. The influence of long-term land application of stockpiled feedlot manure (SM) containing either wood-chip (SM-WD) or straw (SM-ST) bedding on soil properties during the barley (Hordeum vulgare L.) silage growing season is unknown. The main objective of our study was determine the effect of bedding material in stockpiled manure (i.e., SM-WD vs. SM-ST) on certain soil properties. A secondary objective was to determine if organic amendments affected certain soil properties compared with unamended soil. Stockpiled feedlot manure with SM-WD or SM-ST bedding at 77 Mg (dry wt) ha−1 yr−1 was annually applied for 13 to 14 yr to a clay loam soil in a replicated field experiment in southern Alberta. There was also an unamended control. Soil properties were measured every 2 wk during the 2011 and 2012 growing season. Properties included water-filled pore space (WFPS), total organic C and total N, NH4-N and NO3-N, water-soluble non-purgeable organic C (NPOC), water-soluble total N (WSTN), denitrification (acetylene inhibition method), and CO2 flux. The most consistent and significant (P≤0.05) bedding effects on soil properties in both years occurred for total organic C, C:N ratio, and WSTN. Total organic C and C:N ratio were generally greater for SM-WD than SM-ST, and the reverse trend occurred for WSTN. Bedding effects on other soil properties (WFPS, NH4-N, NO3-N, NPOC) occurred in 2012, but not in 2011. Total N, daily denitrification, and daily CO2 flux were generally unaffected by bedding material. Mean daily denitrification fluxes ranged from 0.9 to 1078 g N2O-N ha−1 d−1 for SM-ST, 0.8 to 326 g N2O-N ha−1 d−1 for SM-WD, and 0.6 to 250 g N2O-N ha−1 d−1 for the CON. Mean daily CO2 fluxes ranged from 5.3 to 43.4 kg CO2-C ha−1 d−1 for SM-WD, 5.5 to 26.0 kg CO2-C ha−1 d−1 for SM-ST, and from 0.5 to 6.8 kg CO2-C ha−1 d−1 for the CON. The findings from our study suggest that bedding material in feedlot manure may be a possible method to manage certain soil properties.


Sign in / Sign up

Export Citation Format

Share Document