scholarly journals Development of monoclonal antibodies against the abnormal prion protein isoform (PrPres) associated with chronic wasting disease (CWD)

2012 ◽  
Vol 13 (4) ◽  
pp. 429
Author(s):  
Hyun-Jeong Jeong ◽  
Nak-Hyung Lee ◽  
Joong-Bok Lee ◽  
Seung-Yong Park ◽  
Chang-Seon Song ◽  
...  
2007 ◽  
Vol 81 (17) ◽  
pp. 9605-9608 ◽  
Author(s):  
Timothy D. Kurt ◽  
Matthew R. Perrott ◽  
Carol J. Wilusz ◽  
Jeffrey Wilusz ◽  
Surachai Supattapone ◽  
...  

ABSTRACT Chronic wasting disease (CWD) of cervids is associated with conversion of the normal cervid prion protein, PrPC, to a protease-resistant conformer, PrPCWD. Here we report the use of both nondenaturing amplification and protein-misfolding cyclic amplification (PMCA) to amplify PrPCWD in vitro. Normal brains from deer, transgenic mice expressing cervid PrPC [Tg(cerPrP)1536 mice], and ferrets supported amplification. PMCA using normal Tg(cerPrP)1536 brains as the PrPC substrate produced >6.5 × 109-fold amplification after six rounds. Highly efficient in vitro amplification of PrPCWD is a significant step toward detection of PrPCWD in the body fluids or excreta of CWD-susceptible species.


2018 ◽  
Vol 293 (51) ◽  
pp. 19812-19822 ◽  
Author(s):  
Dalia H. Abdelaziz ◽  
Simrika Thapa ◽  
Jenna Brandon ◽  
Justine Maybee ◽  
Lauren Vankuppeveld ◽  
...  

2007 ◽  
Vol 364 (4) ◽  
pp. 796-800 ◽  
Author(s):  
Li Li ◽  
Michael B. Coulthart ◽  
Aru Balachandran ◽  
Avi Chakrabartty ◽  
Neil R. Cashman

2017 ◽  
Vol 91 (19) ◽  
Author(s):  
S. Jo Moore ◽  
M. Heather West Greenlee ◽  
Naveen Kondru ◽  
Sireesha Manne ◽  
Jodi D. Smith ◽  
...  

ABSTRACT Chronic wasting disease (CWD) is a naturally occurring, fatal neurodegenerative disease of cervids. The potential for swine to serve as hosts for the agent of CWD is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Crossbred piglets were assigned to three groups, intracranially inoculated (n = 20), orally inoculated (n = 19), and noninoculated (n = 9). At approximately the age at which commercial pigs reach market weight, half of the pigs in each group were culled (“market weight” groups). The remaining pigs (“aged” groups) were allowed to incubate for up to 73 months postinoculation (mpi). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by Western blotting (WB), antigen capture enzyme immunoassay (EIA), immunohistochemistry (IHC), and in vitro real-time quaking-induced conversion (RT-QuIC). Brain samples from selected pigs were also bioassayed in mice expressing porcine prion protein. Four intracranially inoculated aged pigs and one orally inoculated aged pig were positive by EIA, IHC, and/or WB. By RT-QuIC, PrPSc was detected in lymphoid and/or brain tissue from one or more pigs in each inoculated group. The bioassay was positive in four out of five pigs assayed. This study demonstrates that pigs can support low-level amplification of CWD prions, although the species barrier to CWD infection is relatively high. However, detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity. IMPORTANCE We challenged domestic swine with the chronic wasting disease agent by inoculation directly into the brain (intracranially) or by oral gavage (orally). Disease-associated prion protein (PrPSc) was detected in brain and lymphoid tissues from intracranially and orally inoculated pigs as early as 8 months of age (6 months postinoculation). Only one pig developed clinical neurologic signs suggestive of prion disease. The amount of PrPSc in the brains and lymphoid tissues of positive pigs was small, especially in orally inoculated pigs. Regardless, positive results obtained with orally inoculated pigs suggest that it may be possible for swine to serve as a reservoir for prion disease under natural conditions.


Prion ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Mariella E. Güere ◽  
Jørn Våge ◽  
Helene Tharaldsen ◽  
Sylvie L. Benestad ◽  
Turid Vikøren ◽  
...  

ACS Omega ◽  
2019 ◽  
Vol 4 (22) ◽  
pp. 19913-19924 ◽  
Author(s):  
Urška Slapšak ◽  
Giulia Salzano ◽  
Gregor Ilc ◽  
Gabriele Giachin ◽  
Jifeng Bian ◽  
...  

2012 ◽  
Vol 93 (7) ◽  
pp. 1624-1629 ◽  
Author(s):  
Rona Wilson ◽  
Chris Plinston ◽  
Nora Hunter ◽  
Cristina Casalone ◽  
Cristiano Corona ◽  
...  

The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.


2006 ◽  
Vol 80 (2) ◽  
pp. 596-604 ◽  
Author(s):  
Gregory J. Raymond ◽  
Emily A. Olsen ◽  
Kil Sun Lee ◽  
Lynne D. Raymond ◽  
P. Kruger Bryant ◽  
...  

ABSTRACT Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected with CWD. Primary cultures derived from uninfected mule deer brain tissue were transformed by transfection with a plasmid containing the simian virus 40 genome. A transformed cell line (MDB) was exposed to microsomes prepared from the brainstem of a CWD-affected mule deer. CWD-associated, protease-resistant prion protein (PrPCWD) was used as an indicator of CWD infection. Although no PrPCWD was detected in any of these cultures after two passes, dilution cloning of cells yielded one PrPCWD-positive clone out of 51. This clone, designated MDBCWD, has maintained stable PrPCWD production through 32 serial passes thus far. A second round of dilution cloning yielded 20 PrPCWD-positive subclones out of 30, one of which was designated MDBCWD2. The MDBCWD2 cell line was positive for fibronectin and negative for microtubule-associated protein 2 (a neuronal marker) and glial fibrillary acidic protein (an activated astrocyte marker), consistent with derivation from brain fibroblasts (e.g., meningeal fibroblasts). Two inhibitors of rodent scrapie protease-resistant PrP accumulation, pentosan polysulfate and a porphyrin compound, indium (III) meso-tetra(4-sulfonatophenyl)porphine chloride, potently blocked PrPCWD accumulation in MDBCWD cells. This demonstrates the utility of these cells in a rapid in vitro screening assay for PrPCWD inhibitors and suggests that these compounds have potential to be active against CWD in vivo.


Sign in / Sign up

Export Citation Format

Share Document