mouse bioassay
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 46)

H-INDEX

41
(FIVE YEARS 4)

Author(s):  
La Thi Huong Huyen ◽  
Nguyen Thuy Linh ◽  
Nguyen Trung Thanh ◽  
Pham Yen

Clostridium botulinum is one of the causes of undiagnosed sudden deaths in humans due to the lethal botulinum neurotoxins (BoNTs). Foodborne botulism rarely occurs in developed countries because of being closely monitored, in opposite to developing countries including Vietnam. In the August 2020 food poisoning outbreak in Vietnam, presence of Clostridium botulinum and BoNTs was identified by culture and mouse bioassay, however, information regarding the possible toxin types was unclear. To examine the types of toxin, we designed primers for specific amplification of gene regions encoding the light chain (LC) domains for both BoNT/A and BoNT/B. After optimization, the expected PCR products were sent for sequencing. The results showed that the sequence of gene encoding BoNT/A LC was 99.2% identical to the CB-27 strain. The sequence of gene encoding BoNT/B LC was approximately 98.8% identical to reference strains. Additionally, we analyzed the sequences of the inferred proteins and identified a substitution that resulted in an early stop codon as previously found in a defective form of BoNT/B. Collectively, we provided the first evidence for C. botulinum strain possessing A(b) type in this studied outbreak. Further enzyme activity and neutralization assays are necessary to validate this preliminary toxin typing.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tigist Bacha ◽  
Ermias Abebaw ◽  
Ayalew Moges ◽  
Amsalu Bekele ◽  
Afework Tamiru ◽  
...  

Abstract Background Foodborne botulism, a toxin-mediated illness caused by Clostridium botulinum, is a public health emergency. Types A, B, and E C. botulinum toxins commonly cause human disease. Outbreaks are often associated with homemade and fermented foods. Botulism is rarely reported in Africa and has never been reported in Ethiopia. Case presentation In March 2015, a cluster of family members from the Wollega, Oromia region, western Ethiopia presented with a symptom constellation suggestive of probable botulism. Clinical examination, epidemiologic investigation, and subsequent laboratory work identified the cause of the outbreak to be accidental ingestion of botulinum toxin in a traditional chili condiment called “Kochi-kocha,” cheese, and clarified butter. Ten out of the fourteen family members who consumed the contaminated products had botulism (attack rate 71.4%) and five died (case fatality rate of 50%). Three of the patients were hospitalized, they presented with altered mental status (n = 2), profound neck and truncal weakness (n = 3), and intact extremity strength despite hyporeflexia (n = 3). The remnant food sample showed botulinum toxin type A with mouse bioassay and C. botulinum type A with culture. Blood drawn on day three of illness from 2/3 (66%) cases was positive for botulinum toxin type-A. Additionally, one of these two cases also had C. botulinum type A cultured from a stool specimen. Two of the cases received Botulism antitoxin (BAT). Conclusion These are the first confirmed cases of botulism in Ethiopia. The disease occurred due to the consumption of commonly consumed homemade foods. Definite diagnoses of botulism cases are challenging, and detailed epidemiologic and laboratory investigations were critical to the identification of this case series. Improved awareness of botulism risk and improved food preparation and storage may prevent future illnesses. The mortality rate of botulism in resource-limited settings remains high. Countries should make a concerted effort to stockpile antitoxin as that is the easiest and quickest intervention after outbreak detection.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 644
Author(s):  
Hélène Taiana Darius ◽  
Taina Revel ◽  
Philippe Cruchet ◽  
Jérôme Viallon ◽  
Clémence Mahana iti Gatti ◽  
...  

Ciguatera poisoning (CP) cases linked to the consumption of deep-water fish occurred in 2003 in the Gambier Islands (French Polynesia). In 2004, on the request of two local fishermen, the presence of ciguatoxins (CTXs) was examined in part of their fish catches, i.e., 22 specimens representing five deep-water fish species. Using the radioactive receptor binding assay (rRBA) and mouse bioassay (MBA), significant CTX levels were detected in seven deep-water specimens in Lutjanidae, Serranidae, and Bramidae families. Following additional purification steps on the remaining liposoluble fractions for 13 of these samples (kept at −20 °C), these latter were reanalyzed in 2018 with improved protocols of the neuroblastoma cell-based assay (CBA-N2a) and liquid chromatography tandem mass spectrometry (LC–MS/MS). Using the CBA-N2a, the highest CTX-like content found in a specimen of Eumegistus illustris (Bramidae) was 2.94 ± 0.27 µg CTX1B eq. kg−1. Its toxin profile consisted of 52-epi-54-deoxyCTX1B, CTX1B, and 54-deoxyCTX1B, as assessed by LC–MS/MS. This is the first study demonstrating that deep-water fish are potential ciguatera vectors and highlighting the importance of a systematic monitoring of CTXs in all exploited fish species, especially in ciguatera hotspots, including deep-water fish, which constitute a significant portion of the commercial deep-sea fisheries in many Asian–Pacific countries.


Author(s):  
Hamed Ahari ◽  
Bahareh ‎ Nowruzi ◽  
Amir Ali Anvar ◽  
Samaneh Jafari Porzani

: Different biological methods based on bioactivity are available to detect cyanotoxins, including neurotoxicity, immunological interactions, hepatotoxicity, cytotoxicity, and enzymatic activity. The mouse bioassay is the first test employed in laboratory cultures, cell extracts, and water bloom materials to detect toxins. It is also used as a traditional method to estimate the LD50. Concerning the ease of access and low cost, it is the most common method for this purpose. In this method, a sample is injected intraperitoneally into adult mice, and accordingly, they are assayed and monitored for about 24 hours for toxic symptoms. The toxin can be detected using this method from minutes to a few hours; its type, e.g., hepatotoxin, neurotoxin, etc., can also be determined. However, this method is nonspecific, fails to detect low amounts, and cannot distinguish between homologues. Although the mouse bioassay is gradually replaced with new chemical and immunological methods, it is still the main technique to detect the bioactivity and efficacy of cyanotoxins using LD50 determined based on the survival time of animals exposed to the toxin. In addition, some countries oppose animal use in toxicity studies. However, high cost, ethical considerations, low-sensitivity, non-specificity, and prolonged processes persuade researchers to employ chemical and functional analysis techniques. The qualitative and quantitative analyses, as well as high specificity and sensitivity, are among the advantages of cytotoxicity tests to investigate cyanotoxins. The present study aimed at reviewing the results obtained from in-vitro and in-vivo investigations of the mouse bioassay to detect cyanotoxins, including microcystins, cylindrospermopsin, saxitoxins, etc.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 761
Author(s):  
Tamara Rodríguez-Cabo ◽  
Ángeles Moroño ◽  
Fabiola Arévalo ◽  
Jorge Correa ◽  
Juan Pablo Lamas ◽  
...  

In the late autumn of 2018 and 2019, some samples taken by the official monitoring systems of Cantabria and the Basque Country were found to be paralytic shellfish poisoning (PSP)-positive using a mouse bioassay. To confirm the presence of PSP toxins and to obtain their profile, these samples were analyzed using an optimized version of the Official Method AOAC 2005.06 and using LC–MS/MS (HILIC). The presence of some PSP toxins (PSTs) in that geographical area (~600 km of coast) was confirmed for the first time. The estimated toxicities ranged from 170 to 983 µg STXdiHCl eq.·kg−1 for the AOAC 2005.06 method and from 150 to 1094 µg STXdiHCl eq.·kg−1 for the LC–MS/MS method, with a good correlation between both methods (r2 = 0.94). Most samples contained STX, GTX2,3, and GTX1,4, and some also had NEO and dcGTX2. All of the PSP-positive samples also contained gymnodimine A, with the concentrations of the two groups of toxins being significantly correlated. The PSP toxin profiles suggest that a species of the genus Alexandrium was likely the causative agent. The presence of gymnodimine A suggests that A. ostenfeldii could be involved, but the contribution of a mixture of Alexandrium species cannot be ruled out.


2021 ◽  
Vol 22 (21) ◽  
pp. 11310
Author(s):  
Ivett Ackermann ◽  
Reiner Ulrich ◽  
Kerstin Tauscher ◽  
Olanrewaju I. Fatola ◽  
Markus Keller ◽  
...  

After oral exposure of cattle with classical bovine spongiform encephalopathy (C-BSE), the infectious agent ascends from the gut to the central nervous system (CNS) primarily via the autonomic nervous system. However, the timeline of this progression has thus far remained widely undetermined. Previous studies were focused on later time points after oral exposure of animals that were already 4 to 6 months old when challenged. In contrast, in this present study, we have orally inoculated 4 to 6 weeks old unweaned calves with high doses of BSE to identify any possible BSE infectivity and/or PrPBSE in peripheral nervous tissues during the first eight months post-inoculation (mpi). For the detection of BSE infectivity, we used a bovine PrP transgenic mouse bioassay, while PrPBSE depositions were analyzed by immunohistochemistry (IHC) and by protein misfolding cyclic amplification (PMCA). We were able to show that as early as 8 mpi the thoracic spinal cord as well as the parasympathetic nodal ganglion of these animals contained PrPBSE and BSE infectivity. This shows that the centripetal prion spread starts early after challenge at least in this age group, which represents an essential piece of information for the risk assessments for food, feed, and pharmaceutical products produced from young calves.


Author(s):  
Dominick A. Centurioni ◽  
Christina T. Egan ◽  
Michael J. Perry

Detection of botulinum neurotoxin or isolation of the toxin producing organism is required for the laboratory confirmation of botulism in clinical specimens. In an effort to reduce animal testing required by the gold standard method of botulinum neurotoxin detection, the mouse bioassay, many technologies have been developed to detect and characterize the causative agent of botulism. Recent advancements in these technologies have led to improvements in technical performance of diagnostic assays; however, many emerging assays have not been validated for the detection of all serotypes in complex clinical and environmental matrices. Improvements to culture protocols, endopeptidase-based assays, and a variety of immunological and molecular methods have provided laboratories with a variety of testing options to evaluate and incorporate into their testing algorithms. While significant advances have been made to improve these assays, additional work is necessary to evaluate these methods in various clinical matrices and to establish standardized criteria for data analysis and interpretation.


2021 ◽  
Author(s):  
Adva Mechaly ◽  
Eran Diamant ◽  
Ron Alcalay ◽  
Alon Ben-David ◽  
Eyal Dor ◽  
...  

Botulinum neurotoxin type E (BoNT/E), the fastest acting toxin of all BoNTs, cleaves the 25 kDa synaptosomal associated protein (SNAP-25) in motor neurons, leading to flaccid paralysis. Specific detection and quantification of BoNT/E-cleaved SNAP-25 neoepitope is essential for diagnosis of BoNT/E intoxication as well as for characterization of anti-BoNT/E antibody preparations. In order to isolate highly specific monoclonal antibodies suitable for in vitro immuno-detection of the exposed neoepitope, mice and rabbits were immunized with an eight amino acid peptide composed of the C-terminus of the cleaved SNAP-25. Immunized rabbits developed a specific and robust polyclonal antibody response, whereas immunized mice mostly demonstrated a weak antibody response that could not discriminate between the two forms of SNAP-25. An immune scFv phage-display library was constructed from the immunized rabbits and a panel of antibodies was isolated. Sequence alignment of the isolated clones revealed high similarity between both heavy and light chains, with exceptionally short HCDR3 sequences. A chimeric scFv-Fc antibody was further expressed and characterized, exhibiting a selective, ultra-high affinity (pM) towards the SNAP-25 neoepitope. Moreover, this antibody enabled sensitive detection of the cleaved SNAP-25 in BoNT/E treated SiMa cells with no cross reactivity with the intact SNAP-25. This novel antibody can be further used to develop an in vitro cell-based assay to diagnose BoNT/E intoxication and to characterize antitoxin preparations, thus eliminating the use of animals in the standard mouse bioassay.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 585
Author(s):  
Maren Schenke ◽  
Hélène-Christine Prause ◽  
Wiebke Bergforth ◽  
Adina Przykopanski ◽  
Andreas Rummel ◽  
...  

The application of botulinum neurotoxins (BoNTs) for medical treatments necessitates a potency quantification of these lethal bacterial toxins, resulting in the use of a large number of test animals. Available alternative methods are limited in their relevance, as they are based on rodent cells or neuroblastoma cell lines or applicable for single toxin serotypes only. Here, human motor neurons (MNs), which are the physiological target of BoNTs, were generated from induced pluripotent stem cells (iPSCs) and compared to the neuroblastoma cell line SiMa, which is often used in cell-based assays for BoNT potency determination. In comparison with the mouse bioassay, human MNs exhibit a superior sensitivity to the BoNT serotypes A1 and B1 at levels that are reflective of human sensitivity. SiMa cells were able to detect BoNT/A1, but with much lower sensitivity than human MNs and appear unsuitable to detect any BoNT/B1 activity. The MNs used for these experiments were generated according to three differentiation protocols, which resulted in distinct sensitivity levels. Molecular parameters such as receptor protein concentration and electrical activity of the MNs were analyzed, but are not predictive for BoNT sensitivity. These results show that human MNs from several sources should be considered in BoNT testing and that human MNs are a physiologically relevant model, which could be used to optimize current BoNT potency testing.


Sign in / Sign up

Export Citation Format

Share Document