Torsion Elements and the Classification of Vector Bundles

1977 ◽  
Vol 29 (2) ◽  
pp. 327-332
Author(s):  
Robert D. Little

There are many situations in algebraic topology when a geometric construction is possible if, and only if, a certain integral cohomology class, an obstruction is zero. When attempts are made to compute the obstruction, it often happens that it is relatively easy to show that m times the obstruction is zero, where m is an integer, and consequently the geometric construction is possible if the cohomology group in question has no elements of order m.

Author(s):  
Lorenzo De Biase ◽  
Enrico Fatighenti ◽  
Fabio Tanturri

AbstractWe rework the Mori–Mukai classification of Fano 3-folds, by describing each of the 105 families via biregular models as zero loci of general global sections of homogeneous vector bundles over products of Grassmannians.


Author(s):  
Nils A. Baas ◽  
Marcel Bökstedt ◽  
Tore August Kro

AbstractFor a 2-category 2C we associate a notion of a principal 2C-bundle. For the 2-category of 2-vector spaces, in the sense of M.M. Kapranov and V.A. Voevodsky, this gives the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. Another 2-category of 2-vector spaces has been proposed by J.C. Baez and A.S. Crans. A calculation using our main theorem shows that in this case the theory of principal 2-bundles splits, up to concordance, as two copies of ordinary vector bundle theory. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out to be classified by the Madsen–Weiss spaces.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanga Bavuma ◽  
Francesco G. Russo

Abstract We show that locally compact abelian p-groups can be embedded in the first Hawaiian group on a compact path connected subspace of the Euclidean space of dimension four. This result gives a new geometric interpretation for the classification of locally compact abelian groups which are rich in commuting closed subgroups. It is then possible to introduce the idea of an algebraic topology for topologically modular locally compact groups via the geometry of the Hawaiian earring. Among other things, we find applications for locally compact groups which are just noncompact.


2008 ◽  
Vol 17 (04) ◽  
pp. 471-482
Author(s):  
XU-AN ZHAO ◽  
HONGZHU GAO

In this paper, we consider the minimal genus problem in a ruled 4-manifold M. There are three key ingredients in the studying, the action of diffeomorphism group of M on H2(M,Z), the geometric construction of surfaces representing a cohomology class and the generalized adjunction formula. At first, we discuss the standard form (see Definition 1.1) of a class under the action of diffeomorphism group on H2(M,Z), we prove the uniqueness of the standard form. Then we construct some embedded surfaces representing the standard forms of some positive classes, the generalized adjunction formula is used to show that these surfaces realize the minimal genera.


Author(s):  
Javier Aramayona ◽  
Priyam Patel ◽  
Nicholas G Vlamis

Abstract It is a classical result that pure mapping class groups of connected, orientable surfaces of finite type and genus at least 3 are perfect. In stark contrast, we construct nontrivial homomorphisms from infinite-genus mapping class groups to the integers. Moreover, we compute the first integral cohomology group associated to the pure mapping class group of any connected orientable surface of genus at least 2 in terms of the surface’s simplicial homology. In order to do this, we show that pure mapping class groups of infinite-genus surfaces split as a semi-direct product.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950057 ◽  
Author(s):  
M. Izumi ◽  
T. Sogabe

We determine the group structure of the homotopy set whose target is the automorphism group of the Cuntz algebra [Formula: see text] for finite [Formula: see text] in terms of K-theory. We show that there is an example of a space for which the homotopy set is a noncommutative group, and hence, the classifying space of the automorphism group of the Cuntz algebra for finite [Formula: see text] is not an H-space. We also make an improvement of Dadarlat’s classification of continuous fields of the Cuntz algebras in terms of vector bundles.


2020 ◽  
Vol 32 (3) ◽  
pp. 607-623
Author(s):  
Nelson Martins-Ferreira ◽  
Andrea Montoli ◽  
Alex Patchkoria ◽  
Manuela Sobral

AbstractWe show that any regular (right) Schreier extension of a monoid M by a monoid A induces an abstract kernel {\Phi\colon M\to\frac{\operatorname{End}(A)}{\operatorname{Inn}(A)}}. If an abstract kernel factors through {\frac{\operatorname{SEnd}(A)}{\operatorname{Inn}(A)}}, where {\operatorname{SEnd}(A)} is the monoid of surjective endomorphisms of A, then we associate to it an obstruction, which is an element of the third cohomology group of M with coefficients in the abelian group {U(Z(A))} of invertible elements of the center {Z(A)} of A, on which M acts via Φ. An abstract kernel {\Phi\colon M\to\frac{\operatorname{SEnd}(A)}{\operatorname{Inn}(A)}} (resp. {\Phi\colon M\to\frac{\operatorname{Aut}(A)}{\operatorname{Inn}(A)}}) is induced by a regular weakly homogeneous (resp. homogeneous) Schreier extension of M by A if and only if its obstruction is zero. We also show that the set of isomorphism classes of regular weakly homogeneous (resp. homogeneous) Schreier extensions inducing a given abstract kernel {\Phi\colon M\to\frac{\operatorname{SEnd}(A)}{\operatorname{Inn}(A)}} (resp. {\Phi\colon M\to\frac{\operatorname{Aut}(A)}{\operatorname{Inn}(A)}}), when it is not empty, is in bijection with the second cohomology group of M with coefficients in {U(Z(A))}.


2014 ◽  
Vol 163 (14) ◽  
pp. 2561-2601 ◽  
Author(s):  
Aravind Asok ◽  
Jean Fasel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document