Algebras Intertwining Normal and Decomposable Operators

1979 ◽  
Vol 31 (6) ◽  
pp. 1339-1344 ◽  
Author(s):  
Ali A. Jafarian

The celebrated result of Lomonosov [6] on the existence of invariant subspaces for operators commuting with a compact operator have been generalized in different directions (for example see [2], [7], [8], [9]). The main result of [9] (see also [7]) is: If is a norm closed algebra of (bounded) operators on an infinite dimensional (complex) Banach space , if K is a nonzero compact operator on , and if then has a non-trivial (closed) invariant subspace. In [7], it is mentioned that the above result holds if instead of compactness for K we assume that K is a non-invertible injective operator with a non-zero eigenvalue belonging to the class of decomposable, hyponormal, or subspectral operators.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Zhaojun Wu ◽  
Zuxing Xuan

The main purpose of this paper is to investigate the characteristic functions and Borel exceptional values ofE-valued meromorphic functions from theℂR={z:|z|<R},  0<R≤+∞to an infinite-dimensional complex Banach spaceEwith a Schauder basis. Results obtained extend the relative results by Xuan, Wu and Yang, Bhoosnurmath, and Pujari.


2018 ◽  
Vol 70 (3) ◽  
pp. 797-811
Author(s):  
Thiago R Alves ◽  
Geraldo Botelho

Abstract In this paper, we develop a method to construct holomorphic functions that exist only on infinite dimensional spaces. The following types of holomorphic functions f:U→ℂ on some open subsets U of an infinite dimensional complex Banach space are constructed: (1) f is bounded holomorphic on U and is continuously, but not uniformly continuously extended to U¯; (2) f is continuous on U¯ and holomorphic of bounded type on U, but f is unbounded on U; (3) f is holomorphic of bounded type on U and f cannot be continuously extended to U¯. The technique we develop is powerful enough to provide, in the cases (2) and (3) above, large algebraic structures formed by such functions (up to the zero function, of course).


2019 ◽  
Vol 38 (3) ◽  
pp. 133-140
Author(s):  
Abdelaziz Tajmouati ◽  
Abdeslam El Bakkali ◽  
Ahmed Toukmati

In this paper we introduce and study the M-hypercyclicity of strongly continuous cosine function on separable complex Banach space, and we give the criteria for cosine function to be M-hypercyclic. We also prove that every separable infinite dimensional complex Banach space admits a uniformly continuous cosine function.


2002 ◽  
Vol 54 (6) ◽  
pp. 1165-1186 ◽  
Author(s):  
Oscar Blasco ◽  
José Luis Arregui

AbstractLet X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p < ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Zhaojun Wu ◽  
Zuxing Xuan

The main purpose of this paper is to establish the Milloux inequality ofE-valued meromorphic function from the complex planeℂto an infinite dimensional complex Banach spaceEwith a Schauder basis. As an application, we study the Borel exceptional values of anE-valued meromorphic function and those of its derivatives; results are obtained to extend some related results for meromorphic scalar-valued function of Singh, Gopalakrishna, and Bhoosnurmath.


Filomat ◽  
2007 ◽  
Vol 21 (1) ◽  
pp. 25-37 ◽  
Author(s):  
B.P. Duggal

Spectral properties of upper triangular operators T = (Tij)1?i,j?n E B(?n) where ?n = ?ni=1?i and ?i is an infinite dimensional complex Banach space such that Tii - ? has the single-valued extension property, SVEP, for all complex ? are studied.


Author(s):  
Edixo Rosales

  En este trabajo X es un espacio de Banach y B(X) denota los operadores acotados. Si T∈B(X), por lat(T) entenderemos los subespacios invariantes por T. Se dice que T es lleno, si (T(M)) ̅=M, para todo M∈lat(T) (la barra indica la clausura en la topología inducida por la norma). Se prueba principalmente el siguiente resultado: Sean X un espacio de Banach y T ∈B(X) acotado por abajo. Sea K ∈Alglat(T)∩{T}' un operador de Riesz. Si K es lleno, entonces T es lleno. Aquí Alglat(T)={S∈B(X):M∈lat(T)⟾M∈lat(S)} y {T}^'={S∈B(X):S∘T=T∘S}.   Palabras clave: Operador lleno, operador de Riesz, operador acotado por abajo.   Abstract In this work X is a Banach space and B(X) denotes the bounded operators. If T ∈B(X), for lat(T) we will understand the invariant subspaces for T. An operator T is full, if (T(M)) ̅=M, for all M∈ latT (the bar indicates the closure in the topology induced by the norm). The following result is true: Let X be a Banach space, T ∈B(X) a bounded below operator and K ∈Alglat(T)∩{T}' a Riesz operator: If K is a full operator, then T is a full operator. Here Alglat(T)={S∈B(X):M∈lat(T)⟾M∈lat(S)} and {T}^'={S∈B(X):S∘T=T∘S}.   Keywords: full operator, Riesz operator, bounded below operator.  


2004 ◽  
Vol 47 (2) ◽  
pp. 298-313 ◽  
Author(s):  
Bamdad R. Yahaghi

AbstractIn this paper we consider collections of compact operators on a real or complex Banach space including linear operators on finite-dimensional vector spaces. We show that such a collection is simultaneously triangularizable if and only if it is arbitrarily close to a simultaneously triangularizable collection of compact operators. As an application of these results we obtain an invariant subspace theorem for certain bounded operators. We further prove that in finite dimensions near reducibility implies reducibility whenever the ground field is or .


2008 ◽  
Vol 51 (4) ◽  
pp. 604-617 ◽  
Author(s):  
Wiesław Śliwa

AbstractIt is proved that every infinite-dimensional non-archimedean Banach space of countable type admits a linear continuous operator without a non-trivial closed invariant subspace. This solves a problem stated by A. C. M. van Rooij and W. H. Schikhof in 1992.


Sign in / Sign up

Export Citation Format

Share Document