AbstractFor $1\le p<\infty $
1
≤
p
<
∞
, let $A^{p}_{\omega }$
A
ω
p
be the weighted Bergman space associated with an exponential type weight ω satisfying
$$ \int _{{\mathbb{D}}} \bigl\vert K_{z}(\xi ) \bigr\vert \omega (\xi )^{1/2} \,dA(\xi ) \le C \omega (z)^{-1/2}, \quad z\in {\mathbb{D}}, $$
∫
D
|
K
z
(
ξ
)
|
ω
(
ξ
)
1
/
2
d
A
(
ξ
)
≤
C
ω
(
z
)
−
1
/
2
,
z
∈
D
,
where $K_{z}$
K
z
is the reproducing kernel of $A^{2}_{\omega }$
A
ω
2
. This condition allows us to obtain some interesting reproducing kernel estimates and more estimates on the solutions of the ∂̅-equation (Theorem 2.5) for more general weight $\omega _{*}$
ω
∗
. As an application, we prove the boundedness of the Bergman projection on $L^{p}_{\omega }$
L
ω
p
, identify the dual space of $A^{p}_{\omega }$
A
ω
p
, and establish an atomic decomposition for it. Further, we give necessary and sufficient conditions for the boundedness and compactness of some operators acting from $A^{p}_{\omega }$
A
ω
p
into $A^{q}_{\omega }$
A
ω
q
, $1\le p,q<\infty $
1
≤
p
,
q
<
∞
, such as Toeplitz and (big) Hankel operators.