Coset Enumeration in a Finitely Presented Semigroup

1978 ◽  
Vol 21 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Andrzej Jura

The enumeration method for finite groups, the so-called Todd-Coxeter process, has been described in [2], [3]. Leech [4] and Trotter [5] carried out the process of coset enumeration for groups on a computer. However Mendelsohn [1] was the first to present a formal proof of the fact that this process ends after a finite number of steps and that it actually enumerates cosets in a group. Dietze and Schaps [7] used Todd-Coxeter′s method to find all subgroups of a given finite index in a finitely presented group. B. H. Neumann [8] modified Todd-Coxeter′s method to enumerate cosets in a semigroup, giving however no proofs of the effectiveness of this method nor that it actually enumerates cosets in a semigroup.

Author(s):  
George Havas ◽  
Derek F. Holt ◽  
P. E. Kenne ◽  
Sarah Rees

AbstractWe study some challenging presentations which arise as groups of deficiency zero. In four cases we settle finiteness: we show that two presentations are for finite groups while two are for infinite groups. Thus we answer three explicit questions in the literature and we provide the first published deficiency zero presentation for a group with derived length seven. The tools we use are coset enumeration and Knuth-Bebdix rewriting, which are well-established as methods for proving finiteness or otherwise of a finitely presented group. We briefly comment on their capabilities and compare their performance.


1974 ◽  
Vol 26 (4) ◽  
pp. 769-782 ◽  
Author(s):  
Anke Dietze ◽  
Mary Schaps

The use of computers to investigate groups has mainly been restricted to finite groups. In this work, a method is given for finding all subgroups of finite index in a given group, which works equally well for finite and for infinite groups. The basic object of study is the finite set of cosets. §2 reviews briefly the representation of a subgroup by permutations of its cosets, introduces the concept of normal coset numbering, due independently to M. Schaps and C. Sims, and describes a version of the Todd-Coxeter algorithm. §3 contains a version due to A. Dietze of a process which was communicated to J. Neubuser by C. Sims, as well as a proof that the process solves the problem stated in the title. A second such process, developed independently by M. Schaps, is described in §4. §5 gives a method for classifying the subgroups by conjugacy, and §6, a suggestion for generalization of the methods to permutation and matrix groups.


1976 ◽  
Vol 20 (1) ◽  
pp. 73-79 ◽  
Author(s):  
M. J. Beetham ◽  
C. M. Campbell

In (8) Todd and Coxeter described an algorithm for enumerating the cosets of a finitely generated subgroup of finite index in a finitely presented group. Several authors ((1), (2), (5), (6), (7)) have discussed a modification of the algorithm to give also a presentation of the subgroup in terms of the given generators.


2020 ◽  
Vol 100 (4) ◽  
pp. 136-142
Author(s):  
V.I. Senashov ◽  
◽  
I.A. Paraschuk ◽  
◽  

We consider the problem of recognizing a group by its bottom layer. This problem is solved in the class of layer-finite groups. A group is layer-finite if it has a finite number of elements of every order. This concept was first introduced by S. N. Chernikov. It appeared in connection with the study of infinite locally finite p-groups in the case when the center of the group has a finite index. S. N. Chernikov described the structure of an arbitrary group in which there are only finite elements of each order and introduced the concept of layer-finite groups in 1948. Bottom layer of the group G is a set of its elements of prime order. If have information about the bottom layer of a group we can receive results about its recognizability by bottom layer. The paper presents the examples of groups that are recognizable, almost recognizable and unrecognizable by its bottom layer under additional conditions.


1977 ◽  
Vol 18 (1) ◽  
pp. 51-56 ◽  
Author(s):  
D. H. McLain

Suppose that G is a finitely presented group, and that we are given a set of generators for a subgroup H of finite index in G. In this paper we describe an algorithm by which a set of defining relations may be found for H in these generators.The algorithm is suitable for programming on a digital computer. It appears to have significant computational advantages over the method of Mendelsohn [8] (which is based on the Schreier-Reidemeister results, see for example [4, pp. 91–95]) in those cases where the generators of H are given as other than the familiar Schreier-Reidemeister generators.


1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.


1978 ◽  
Vol 19 (2) ◽  
pp. 153-154 ◽  
Author(s):  
John C. Lennox

We say that a group G has finite lower central depth (or simply, finite depth) if the lower central series of G stabilises after a finite number of steps.In [1], we proved that if G is a finitely generated soluble group in which each two generator subgroup has finite depth then G is a finite-by-nilpotent group. Here, in answer to a question of R. Baer, we prove the following stronger version of this result.


1993 ◽  
Vol 36 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Edmund F. Robertson ◽  
Yusuf Ünlü

Semigroup presentations have been studied over a long period, usually as a means of providing examples of semigroups. In 1967 B. H. Neumann introduced an enumeration method for finitely presented semigroups analogous to the Todd–Coxeter coset enumeration process for groups. A proof of Neumann's enumeration method was given by Jura in 1978.In Section 3 of this paper we describe a machine implementation of a semigroup enumeration algorithm based on that of Neumann. In Section 2 we examine certain semigroup presentations, motivated by the fact that the corresponding group presentation has yielded interesting groups. The theorems, although proved algebraically, were suggested by the semigroup enumeration program.


Sign in / Sign up

Export Citation Format

Share Document